グラフ生成モデルにおける 入力情報が構造的特徴量の 制御精度に与える影響の検証

佐藤 天樹¹ 津川 翔² 眞田 亜紀子¹ 渡部 康平³ ¹長岡技術科学大学 大学院工学研究科 ²筑波大学 システム情報系 ³埼玉大学 大学院理工学研究科

Contents

- 1.研究背景·目的
- 2.関連研究
- 3.提案手法
- 4.実験
- 5.結果
- 6.まとめ・今後の展望

1.研究背景·目的

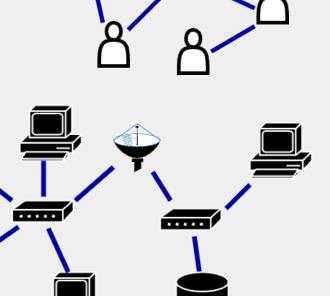
- 2.関連研究
- 3.提案手法
- 4.実験
- 5.結果
- 6.まとめ・今後の展望

研究背景 - 1

- ◆グラフ構造はノード(接続点)とエッジ(繋がり)で表現される
 - ◆多くの関係性を表現可能である (例:人間関係,交通網,通信ネットワーク)
 - ◆応用分野でのグラフ構造の利用は増加している
- ◆グラフ構造によるシミュレーションでは, 現実世界のグラフ構造の特徴を捉えた

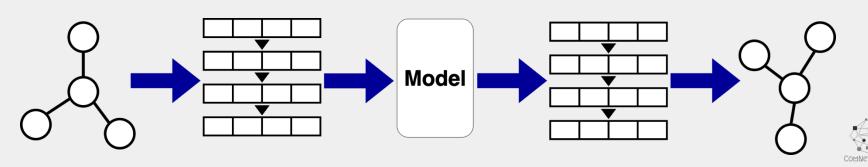
グラフを用意する必要がある

◆セキュリティやプライバシー、 計測データの不足などにより 現実世界の環境から直接再現される グラフ(実グラフ)の数は限られている



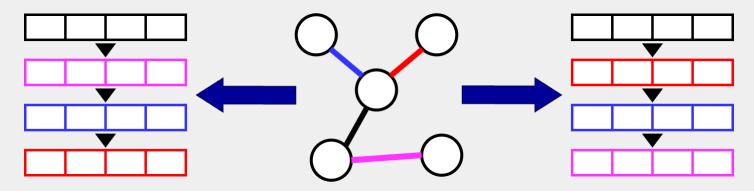
研究背景 - 2

- ◆グラフ生成モデル
 - ◆統計的手法を用いたモデル
 - ◆実グラフが持つ特徴の一部を再現可能
 - ◆複数の特徴を同時に再現することは困難
 - ◆機械学習を用いたモデル
 - ◆実グラフが持つ特徴の多くを同時に再現可能
 - ◆特徴の正確な制御が困難
- **◆先行研究:GraphTune**
 - ◆グラフをシーケンスとして扱う
 - ◆任意の構造的特徴量を制御することが可能

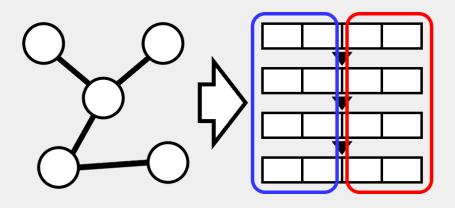


研究目的

- ◆シーケンスが生成されるグラフ構造に影響を与える
 - ◆最適な順序を求める研究は存在 ランダムウォーク, 深さ優先探索(DFS), 幅優先探索(BFS) など



◆順序以外の情報(ノード情報, 時系列的情報)の影響を検証する

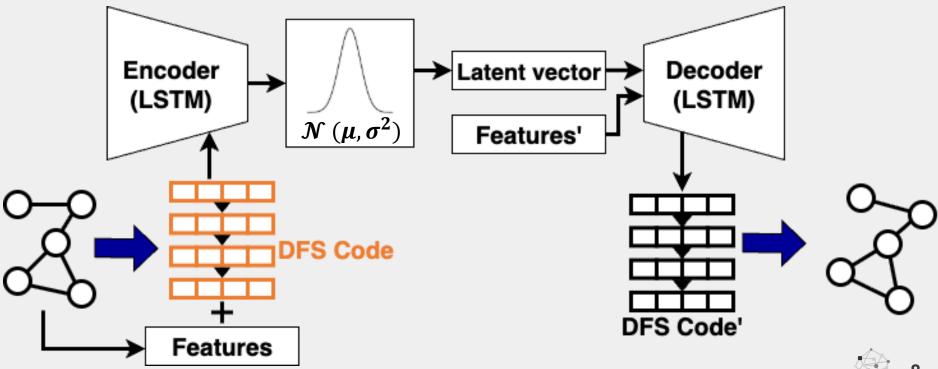


- □ ノード識別子(ノードID, ノードラベル)
- □追加情報 (次数, ノード情報)

- 1.研究背景·目的
- 2.関連研究
- 3.提案手法
- 4.実験
- 5.結果
- 6.まとめ・今後の展望

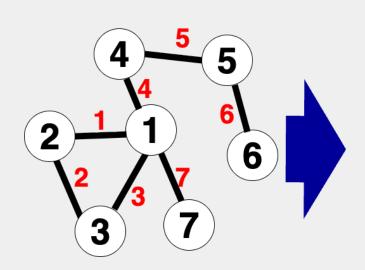
関連研究:GraphTune [1]

- ◆グラフをDFS Code と呼ばれるシーケンスに変換し、 LSTMによってシーケンスを学習する
- ◆グラフの構造的特徴量を入力することで、 生成されるグラフの特徴量を制御可能



DFS Code

- ◆グラフからシーケンスへの変換手法の一つ
- ◆グラフをDFSで探索した履歴を表現
- ◆高次数のノードを優先して全エッジを探索



ノードには発見順を、 エッジには探索順序を 表示している

探索順序	現在の ノードの タイム スタンプ	次の ノードの タイム スタンプ	現在の ノード ラベル (次数)	次の ノード ラベル (次数)	エッジのラベル
1	1	2	4	3	0
2	2	3	3	2	0
3	3	4	2	1	0
4	2	5	3	1	0
5	1	6	4	2	0
6	6	7	2	2	0
7	7	1	2	4	0

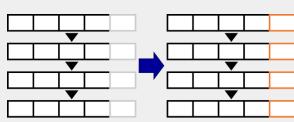
- 1.研究背景·目的
- 2.関連研究
- 3.提案手法
- 4.実験
- 5.結果
- 6.まとめ・今後の展望

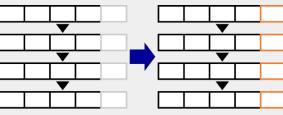
シーケンスへの要素の追加 - 1

- ◆GraphTune で使用しているDFS Code および、順序を幅優先探索(BFS) に変更したBFS Code に対して要素の追加を行う
- ◆グラフの構造的特徴に基づく情報
 - ◆固有ベクトル中心性指標
 - ◆グラフ内におけるノードの重要性を示す
 - ◆シーケンスが持つノード情報の追加
- ◆探索に基づく時系列的な情報
 - ◆カウントダウン
 - ◆局所的な残りのステップ数を表す
 - ◆モデルが捉えにくい値の急激な変化のタイミングを示唆

シーケンスへの要素の追加 - 2

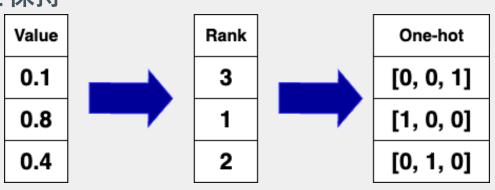
- ◆DFS Code は、以下の5要素を基本としている
 - ◆始点・終点のノードのタイムスタンプ
 - ◆始点・終点のノードの次数
 - ◆エッジのラベル(GraphTune では 0 で統一)
- ◆固有ベクトル中心性
 - ◆エッジのラベルを除去し、始点・終点のノードの 固有ベクトル中心性のランク(EVC Rank)を導入
 - ◆5 要素 ⇒ 6 要素 に
- ◆カウントダウン
 - ◆エッジのラベルとしてカウントダウンラベルを導入
 - ◆エッジに関する情報を追加

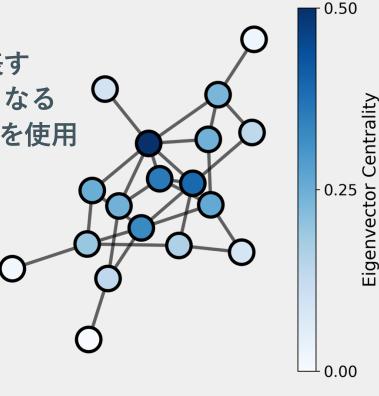




固有ベクトル中心性

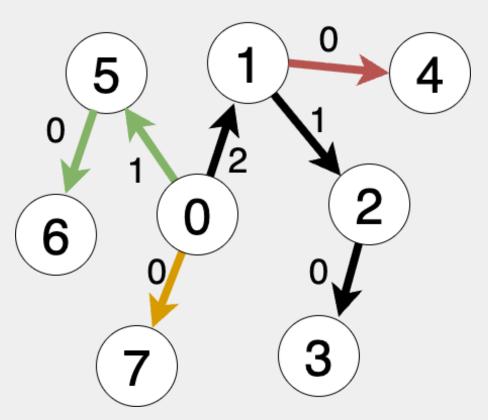
- ◆固有ベクトル中心性
 - ◆グラフ内におけるノードの重要性を表す
 - ◆重要なノードと繋がるほど値は大きくなる
 - ◆ランキング化したもの(EVC Rank)を使用
- ◆ランキング化
 - ◆GraphTune では One-hot エンコーディングを採用
 - ◆数値を 0, 1 で表現する手法の一つ
 - ◆連続値は表現不可
 - ◆値の大小関係のみを保持





DFS におけるカウントダウン

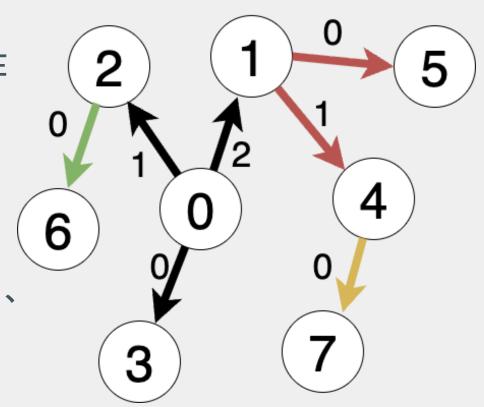
- ◆DFSでは、可能な限り長い経路を辿ろうとする
- ◆現在の終点が次の始点になる⇒ 1本の経路を進んでいる
- ◆終点までの残りのステップ数 を明示する



BFS におけるカウントダウン

- ◆BFSでは、近い場所から順に幅広く探索を行う
- ◆現在の始点と次の始点が同一 ⇒ 近隣に未探索のエッジが存在
- ◆現在の始点と次の始点が異なる

 ⇒ 当該ノードの探索が終了
- ◆ノードに隣接するエッジのうち、未発見のエッジの本数を明示



- 1.研究背景·目的
- 2.関連研究
- 3.提案手法
- 4.実験
- 5.結果
- 6.まとめ・今後の展望

データセット

◆元データ:Higgs Twitter Dataset [2]

◆ノード:ユーザー

◆エッジ:フォロー・フォロワーの関係

◆ノード数:456,626

◆エッジ数:14,855,842

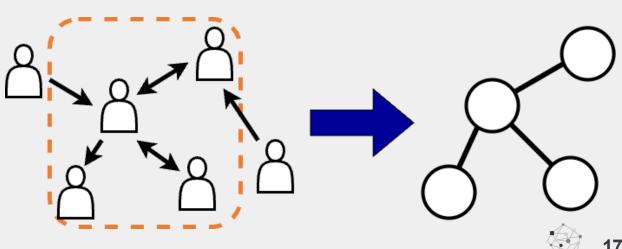
◆GraphTune に従い、元データからランダムウォークで サンプリングした部分グラフを使用

◆グラフ数:2,000

◆ノード数:50

◆無向

◆属性・重みなし



実験設定 - 1

- ◆Twitterのデータセットを使用してモデルの学習を行い、 複数の条件により特徴量の制御精度を比較する
- ◆比較を行う条件
 - ◆探索手法
 - **♦**DFS, BFS
 - ◆シーケンスに付加する情報
 - ◆なし(ベースライン), EVC Rank, カウントダウン
 - ◆制御する特徴量と指定値

◆平均最短経路長(APL): [3.00, 4.00, 5.00]

◆クラスタ係数(CC): [0.10, 0.20, 0.30]

◆モジュール性(MQ): [0.40, 0.55, 0.70]

◆平均次数(AD): [3.00, 3.50, 4.00]

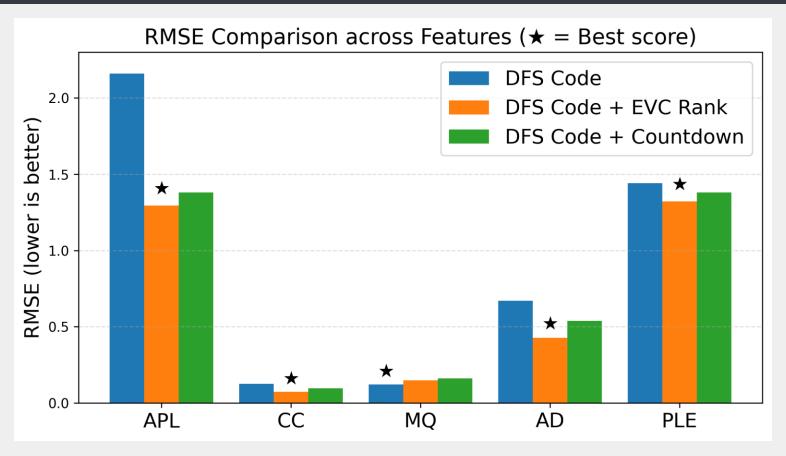
◆べき乗指数(PLE): [2.60, 3.00, 3.40]

実験設定 - 2

- ◆データセットの配分
 - ◆学習用:1800, 検証用:200
- ◆モデルパラメータ
 - ◆GraphTune と同様
- ◆評価指標
 - ◆生成したグラフが持つ特徴量の値と、 実際の指定値の間の二乗平均平方根誤差(RMSE)を使用
 - ◆結果表示では、各特徴量の3条件を平均して可視化
- ◆各条件で、ランダム要素となるSeed 値を変更し、10回ずつ実施
 - ◆RMSEの平均と分散を記録

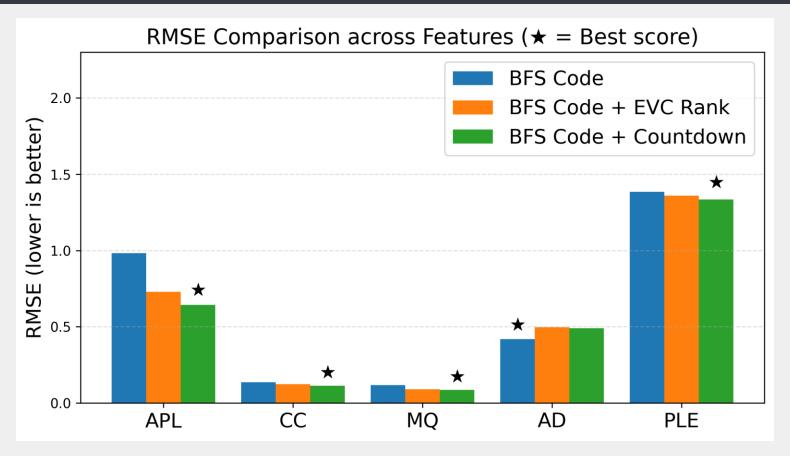
- 1.研究背景·目的
- 2.関連研究
- 3.提案手法
- 4.実験
- 5.結果
- 6.まとめ・今後の展望

実験結果:DFS



- ◆EVC Rank を導入した手法が、4種類の特徴量で最良の結果を記録
- ◆カウントダウンでも、従来手法より小さなRMSE を記録

実験結果:BFS



- ◆カウントダウンを導入した手法が、4条件で最良の結果を記録
- ◆EVC Rank を導入した手法も、従来手法より小さなRMSEを記録

- 1.研究背景·目的
- 2.関連研究
- 3.提案手法
- 4.実験
- 5.結果
- 6.まとめ・今後の展望

まとめ・今後の展望

◆まとめ

- ◆GraphTune におけるグラフからシーケンスへの変換手法である DFS Code、および BFS Code に対し、EVC Rankや カウントダウンラベルといった、追加情報を導入したシーケンスで 特徴量の制御精度の比較を行った
- ◆RMSEによる定量的評価から、提案手法を使用することで 従来手法を上回る精度で特徴量を制御可能であることを示した

◆今後の展望

- ◆次数情報と今回導入した情報との有効性比較
- ◆グラフが持つ他の情報を使用したより広範な実験
- ◆GraphTune 以外のシーケンスベースのモデルでの検証

参考文献

- ◆[1] K. Watabe, S. Nakazawa, Y. Sato, S. Tsugawa, and K. Nakagawa, "Graphtune: A learning-based graph generative model with tunable structural features," IEEE Transactions on Network Science and Engineering, vol.10, no.4, pp.2226–2238, 2023.
- **♦**[2] M. D. Domenico, A. Lima, P. Mougel, and M. Musolesi, "The Anatomy of a Scientific Rumor," Scientific Reports, vol. 3, no. 2980, 2013.

補足:グラフの構造的特徴量

- ◆グラフの構造的特徴を表す特徴量は複数存在する
- ◆本研究では、以下の特徴量を使用する
 - ◆平均最短経路長 (APL)
 - ◆すべての2ノード間の最短経路長の平均値
 - ◆クラスタ係数 (CC)
 - ◆3つのノードが三角形を形成する割合のグラフ全体における平均
 - ◆モジュール性 (MQ)
 - ◆グラフを複数のコミュニティに分割したとき、コミュニティ内でのまとま りの強さ
 - ◆平均次数 (AD)
 - ◆あるノードが何本のエッジを持つかの平均値
 - ◆べき乗指数 (PLE)
 - ◆次数分布において、両軸を対数とした場合の直線の傾き

補足:RMSEの算出方法

◆特徴量の指定値と、生成されたグラフの特徴量とのRMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (c^* - c_i)}$$

n:生成されたグラフの個数

c*:特徴量の指定値

 c_i : 生成グラフの特徴量

補足:実験結果(DFS)

◆最良の結果を太字、次点の結果を下線で示す

Features	Specified Value	Normal DFS Code	DFS Code + EVC Rank	DFS Code + Countdown
APL	3.0	1.343 ± 0.902	0.520 ± 0.122	0.674 ± 0.179
	4.0	2.102 ± 1.054	1.332 ± 0.179	1.355 ± 0.157
	5.0	3.034 ± 1.220	2.034 ± 0.193	2.114 ± 0.225
CC	0.10	0.108 ± 0.050	0.063 ± 0.023	0.081 ± 0.017
	0.20	0.135 ± 0.034	0.072 ± 0.012	0.102 ± 0.027
	0.30	0.133 ± 0.030	0.087 ± 0.013	0.105 ± 0.014
MQ	0.40	0.153 ± 0.045	0.099 ± 0.031	0.083 ± 0.017
	0.55	0.119 ± 0.012	0.135 ± 0.038	0.149 ± 0.031
	0.70	0.092 ± 0.048	0.211 ± 0.059	0.255 ± 0.044
AD	3.0	0.513 ± 0.094	0.337 ± 0.085	0.514 ± 0.171
	3.5	0.725 ± 0.182	0.441 ± 0.099	0.601 ± 0.131
	4.0	0.775 ± 0.121	0.504 ± 0.159	0.499 ± 0.243
PLE	2.6	1.036 ± 0.108	0.965 ± 0.060	1.033 ± 0.055
	3.0	1.456 ± 0.123	1.316 ± 0.065	1.364 ± 0.046
	3.4	1.828 ± 0.153	1.681 ± 0.068	1.744 ± 0.052

補足:実験結果(BFS)

◆最良の結果を太字、次点の結果を下線で示す

Features	Specified Value	Normal BFS Code	BFS Code + EVC Rank	BFS Code + Countdown
APL	3.0	0.152 ± 0.043	0.568 ± 0.188	0.321 ± 0.179
	4.0	0.973 ± 0.065	0.512 ± 0.151	0.594 ± 0.166
	5.0	1.824 ± 0.220	1.107 ± 0.373	1.011 ± 0.373
CC	0.10	0.071 ± 0.006	0.070 ± 0.014	0.058 ± 0.013
	0.20	0.139 ± 0.016	0.122 ± 0.022	0.119 ± 0.018
	0.30	0.198 ± 0.048	0.178 ± 0.022	0.160 ± 0.051
MQ	0.40	0.057 ± 0.020	0.044 ± 0.014	0.053 ± 0.023
	0.55	0.108 ± 0.050	0.059 ± 0.018	0.074 ± 0.038
	0.70	0.186 ± 0.034	0.164 ± 0.033	0.132 ± 0.043
AD	3.0	0.371 ± 0.218	0.336 ± 0.075	0.361 ± 0.127
	3.5	0.383 ± 0.126	0.456 ± 0.102	0.401 ± 0.087
	4.0	0.499 ± 0.153	0.697 ± 0.211	0.708 ± 0.135
PLE	2.6	0.994 ± 0.056	0.970 ± 0.033	0.935 ± 0.040
	3.0	1.382 ± 0.056	1.356 ± 0.035	1.346 ± 0.036
	3.4	1.780 ± 0.052	1.750 ± 0.034	1.721 ± 0.029