
n A counter placed in a network is specified by the pair of arc and path.
n A counter maintains the number of packets transmitted into the arc

along the associated path.

n We assume that every arc has either a normal state lj ≤ ε or an
abnormal state lj ≥ δlll.
n It is worth noting that our model works without the strong

assumption, ε� δe, used in [1].

n There are two baseline approaches to solve per-link information x
using information yy of nn subpaths.

1. Linear algebra approach can exactly determine the traffic volumes
with change, but it requires many counters to make TA full-rank.

2. Boolean algebra approach requires fewer counters, but it only locates
failed links without volume change.

n This paper establishes a new measurement method that intervenes
between the two approaches.
n The volume change is estimated with error bounds, while it requires

counters fewer than the linear algebra approach and close to the
Boolean algebra approach.

n In our method, an abnormal arc is specified by solving a Boolean
equation y = A(C)ccccc.x

n For a feasible path [PPPPPPPPPPPPPPPP], our estimator is
[TTTTTTTTTTTT2] if [E is located on the lower side of the specified
abnormal arc, and [TTTTTTTTTTTTT1] otherwise.

n The counter set Cc is aa-measurable if

n For given P,

Conventional Traffic Matrix Estimation
Background and Objectives 

n Traffic Matrices (TMs), which specify the traffic volumes between
origin-destination pairs in a network, are used by many network
engineering tasks.
n traffic engineering
n capacity planning
n anomaly detection etc.
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Conclusion
n With the solid theory about the measurability based on Boolean

matrices, we developed an optimization algorithm for the minimum
counter set.

n Experiments showed the great performance with real datasets.

Network Model
Formulation

Measurability Theory and Optimization

Definition of measurability

Optimization of Counter Placement

Experiments

Estimation

Objective

n Accurate TMs including volume changes would be very useful for
advanced network engineering.

n This paper studies a mathematical model to estimate traffic volumes
with their change along a path, by counting the number of packets.
n The number of counters should be minimized to reduce the

measurement cost.

Two baseline approaches 

the set of feasible pathsthe set of arcs in a network

Measurability Theorem
n [Theorem] For the above estimator, a counter set C is (1 − ε)d−2 -

measurable, if the measurement matrix A(C) is 1-independent and
every feasible path PP has at least one counter on it.
n A matrix A(C) is 1-independent if any column vector of A(C) is

different from each other and none of them equal to zero vector.

n We initially place counters C0 at first arcs for every PP.
n To satisfy 1-independency, additional counter X that maximizes the

following coverage function g is placed repeatedly.
n The coverage function g is submodular, and the problem is a

submodular optimization.

n Subpaths that are longer than xxxxxxxxxxxxxx hops are divided by
placing counters.
n Inspecting the counter values, we can tell the longer subpath

contains an abnormal arc or not.
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(c) Purdue

Fig. 6. The number of rows in a measurement matrix.

believe that this paper gives a new viewpoint to network
measurement and opens a novel research field between the
TM estimation and the fault localization. This research field
embraces mathematical interests as well as practical impor-
tance.

We will extend our method under the constraint of SRAM
sizes. We also will investigate the impact of traffic fluctuation
and packet sampling on the accuracy of our method. This paper
assumed path volumes are directly counted at ingress switches,
but they could be estimated by TM estimation techniques; this
approach gives us opportunities to reduce counters further,
though estimation errors might not be bounded.

APPENDIX

A. Submodularity of coverage functions

This appendix proves the following Theorem 7.

Theorem 7. Coverage function g
0

is submodular.

We only show the proof for the path measurability, but the
proof for the pathset is almost same.

The function g
0

is submodular if and only if g
0

(x|X) 
g
0

(x|X 0
) for all X ◆ X 0 and x 62 X . If a

i

= a

j

in X but
a

0
i

6= a

0
j

in X [ {x}, this is mentioned as the arc pair, e
j

, e
k

,
is distinguished by adding the new counter x to X where
(a

ij

) and (a0
ij

) are the measurement matrices of X and X 0,
respectively. A part of feasible path P , which starts from e

i

to e
j

, is denoted by P
i!j

(e
i

2 P
i!j

but e
j

62 P
i!j

).

Lemma 9. Let a new counter x = (e
l

, P ) be added to counter
set X and be placed after an arc e

k

, where e
k

was the last
counter arc on feasible path P (Fig. 7). If an arc pair, e

i

, e
j

2
E, is distinguished by the new counter x, then they satisfy
e
i

2 P
k!l

^ e
j

62 P
1!l

or vice versa.

Proof: Proof by contradiction. Suppose the other the other
arc e

j

is in P
1!l

. If e
j

is in the same part P
k!l

, then the pair
e
i

, e
j

is clearly undistinguished, which is a contradiction. If
e
j

is in P
1!k

, then the pair e
i

, e
j

is already distinguished in
X . This, however, contradicts to the assumption that adding
x distinguishes the pair e

i

, e
j

.

Lemma 10. Let a new counter x = (e
l

, P ) be added to
counter set X and be placed between two counter arcs e

k

P

e1 e

k

e

l

P1!k

P

k!l

Fig. 7. Counter (e
l

, P ) is put at the red vertex, which follows the preceding
counters.
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Fig. 8. Counter (e
l

, P ) is put at the red vertex, which is between other
counters.

and e
m

on feasible path P (Fig. 8). If an arc pair, e
i

, e
j

2 E,
is distinguished by x, then they satisfy e

i

2 P
k!l

^e
j

2 P
l!m

or vice versa.

Proof: It can be proven by contradiction like Lemma 9.

The submodularity of g is finally shown in the following
lemma.

Lemma 11. The submodularity condition, g
0

(x|X) 
g
0

(x|X 0
), holds for X ◆ X 0 and x 62 X .

Proof: It is sufficient to show that any arc pair distin-
guished by adding x to X is also distinguished by adding x
to X 0.

• Consider the case that the counter x = (e
l

, P ) is placed
after the last counter arc on P (Fig. 7). If an arc pair
e
i

, e
j

is distinguished by adding the new counter x to
X , then e

i

2 P
k!l

and e
j

62 P
1!l

from Lemma 9. This
arc pair is also distinguished by adding x to X 0, because
every feasible path has the ingress counter (e

1

, P ) as C
0

and e
i

is in the subpath of P
1!l

, which is created by x.
• Consider the other case, the counter x = (e

l

, P ) is placed
before the last counter arc on P (Fig. 8). In a similar way
with the previous case, we can show that the arc pair is
also distinguished by adding x to X 0, using Lemma 10.

n Our approach is evaluated
using three configuration
datasets.
nInternet2
nStanford backbone network
nPurdue campus network

The result for Internet2

n Though our method can provide the error bounds and traffic volumes,
it almost converges to the conventional Boolean technique [1] for
xxxxxxxxxxxxxxx.
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n Conventional TM estimation techniques
assume the strict flow conservation.
n Traffic volumes are unchanged along a

path from the origin to the destination.

Traffic volumes 
are unchanged 

Per-link counters are placed

Traffic volumes are changed 
due to link failure 

Per-path counters 
are placed

The number of lost packets can be 
measured on a subpath between counters

xx: a vector whose x-th element is the packet loss 
xxxxrate on x-th link 
xx: a vector whose x-th element is volume of lost 
xxxxtraffic on x-th path 

xx: a Boolean vector whose x-th element indicates 
xxxxwhether x-th link is failed
xx: a Boolean vector whose x-th element indicates 
xxxxwhether x-th subpath is failed

n We assume that every path observes the equal loss rate for the same
abnormal arc.

n This paper assumes a single arc failure.

Estimator (see below) Upper boundLower bound

Formulation of the problem

xx: a measurement matrix whose element aaij indicates whether ii-th
xxxxsubpath includes jjj-th link. It is specified by counter placement. 

xx: an element tttii is a traffic volume of ii-th path and the other elements are zero. 

e2 e3e1
Counter value KK


