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Abstract—Active measurement, which can provide end-to-
end measurements of network performance, is critical since
the Internet is managed by multiple organizations. Recently,
on the active measurement of delay and loss, Baccelli et al
reported that many probing policies can be used to provide
appropriate estimation in addition to the traditional policy based
on PASTA property if the volume of probe stream is negligible
compared to the traffic stream. Probing schemes with fixed probe
packet intervals suffer from the phase-lock phenomenon due
to synchronization against the network performance; they do,
however, provide superior accuracy. A remaining issue is how
to decide the optimal probing policy while taking the phase-lock
phenomenon into consideration. In this paper, we propose the
probing policy that randomly fluctuates the probe packet interval
to avoid the phase-lock phenomenon. We start by clarifying the
relationships among the fluctuation magnitude, the properties of
the target network, and estimation accuracy, and we discuss the
optimal probing policy with regard to the properties of the target
network.

I. INTRODUCTION

The Internet has spread widely over the last several decades,
and it has come to play a key role as an infrastructure
supporting society and the economy. On the other hand,
Quality of Service (QoS) which is represented by delay and
loss in addition to connectivity, is appropriately regarded as
a key technology goal. Controlling network quality demands
an understanding of the internal state of the network, the
key metric of which is congestion. However, the Internet is
composed of multiple networks that are managed by different
Internet Service Providers (ISP) or other organizations, and it
is inherently difficult to gather the information needed from
the different managers of the networks. Therefore, we need
a way of measuring, from outside the Internet, the QoS of
end-to-end connections.

Active measurement is an end-to-end measurement tech-
nique that can estimate the QoS of a network path. Active
measurement derives the QoS from information obtained by
injecting probe packets into the target network path [1], [2],
[3]. From the the delay and loss experienced by probe packets,
active measurement can estimate one-way delay, round-trip
time (RTT), and loss rate on the network path. It can also
estimate link capacity [4] and available bandwidth [5] from
changes in the delay or interval of the probe packets.

Active measurement is easy for the end user to perform
but it is not trouble free. The injection of probe packets
impact the path’s performance. We cannot estimate the true

performance since that state occurs only without the probe
stream. If we inject a lot of probe packets to increase sampling
rate, estimation accuracy suffers due to the extra traffic. The
problem of extra traffic is discussed in [6]. Therefore, it is
important to achieve high accuracy with a limited number of
probe packets.

Work by Baccelli et al [7], [8] gaves an important sug-
gestion with respect to the accuracy of active measurement
in assessing delay and loss. The current favorite is to use
the PASTA (Poisson Arrivals See Time Averages) property
by issuing probe packets so that their arrival intervals follow
an exponential distribution, i.e. packet injection is a Poisson
process [9]. Probing policy which is fixing the probe packet
arrival intervals (periodic-probing) is also used because it
is easier to manipulate. PASTA-based and periodic-probing
was compared in [10]. However, recent work indicates that
there may be many other distributions that can provide higher
measurement accuracy if a non-intrusive context (the effect
of probe packets is insignificant) can be assumed [7]. This
property is named NIMASTA (Non-Intrusive Mixing Arrivals
See Time Averages).

NIMASTA contains the following three assumptions.
1) The stochastic process that expresses the network state

we are interested in (e.g. virtual delay and loss/no-loss
indication) is stationary and ergodic. This process is
called the ground truth process.

2) The point process of probe packets arrival {Ti} (i =
1, 2, . . . , m) is stationary and mixing. Mixing is the
requirement that guarantees joint ergodicity between the
probe and ground truth processes (see [7] for details).

3) The last assumption is the non-intrusive context, i.e. we
can ignore the impact of probe packets. Namely, the ratio
of the probe stream to all streams is very small.

Under the above assumptions, Baccelli et al proved that the
following equation holds,

lim
m→∞

1
m

m∑
i=1

f(X(Ti)) = E[f(X(0))] a.s. , (1)

where X(t) and f are ground truth process and an arbitrary
positive function, respectively. If we can obtain X(Ti) (e.g.
the delay of the probe packet or loss/no-loss of probe packet)
from a probe packet injected at time Ti, (1) means that we
can estimate E[f(X(0))] by injection of m probe packets.
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The only requirements for the point process of probe packet
arrival {Ti} (i = 1, 2, . . . ) are that it be stationary and mixing.
Therefore, there are a lot of point processes of probe packet
arrival that can achieve appropriate estimation of ensemble
mean E[f(X(0))] besides PASTA-based probing. Such mixing
point process include those whose intervals follow the Gamma
and the uniform distribution. Note that periodic-probing with
fixed interval is not a mixing process, and does not satisfy (1).

Moreover, Baccelli et al investigated how to select an
optimal probing process [8]. We can select an optimal probing
process under a specific assumption by using the inter-probe
time given by the parameterized Gamma distribution.

If we estimate the mean of X(0) by using active measure-
ment, we can use estimator P̂ =

∑m
i=1 X(Ti)/m. Thus the

variance of P̂ is

Var[P̂ ] =
1

m2

m∑
i=1

m∑
j=1

∫ ∞

−∞
r(τ)fi−j(τ)dτ , (2)

where fi−j is probability density function (pdf) of Ti − Tj ,
r(τ) = Cov (X(t), X(t + τ)) is the autocovariance function
(ACF) of the ground truth process X(t) (we can express r(τ)
by τ alone, because X(t) is stationary).

If r(τ) is convex on interval [0,∞) and the average of the
inter-probe time is µ, the following equation can be proven by
using Jensen’s inequality [11].∫ ∞

−∞
r(τ)fk(τ)dτ ≥

∫ ∞

−∞
r(τ)δ(τ − kµ)dτ , (3)

where δ(·) denotes Dirac δ function. (3) means that no other
probing process with an average interval µ has a variance that
is lower than that of periodic-probing. Estimator variance is
associated with accuracy, lower is better, so periodic-probing
is the best probing process if we focus only on asymptotic
variance.

On the other hand, periodic-probing does not satisfy the
assumptions of (1) due to non-mixing, so periodic-probing
is not necessarily the best. This is because the phase-lock
phenomenon may occur and the estimator may converge on a
false value when a frequency component of the ground truth
process is synchronized with the cycle of the probing process.
Namely, periodic-probing has a bias. Therefore, we cannot
categorize periodic-probing as the optimal probing process.

To tune the tradeoff between traditional probing process
(which obeys Poisson arrival) and periodic-probing (which has
a bias but has the advantage in terms of asymptotic variance),
Baccelli et al proposed a probing process that gives an inter-
probe time that obeys the parameterized Gamma distribution.

Gamma-probing provides multiple selections lying be-
tween traditional PASTA-based probing and periodic-probing
through parameter, and it is a great advance in network
measurement techniques. However, since Baccelli et al did
not indicate how to decide upon the optimal parameter, it has
remained a problem with no solution. Therefore, we cannot
decide upon probing policy which we should use.

In this paper, we introduce a method to specify the optimal
probing policy so as to maximize the accuracy of active

measurements with regard to delay and loss (we don’t use
the approach with Gamma-probing). To avoid the phase-lock
phenomenon, we add a random fluctuation to probe packet
intervals. We clarify the relationships among the fluctuation
magnitude imposed on probe packet interval, the property of
the target network and accuracy of estimation, and we discuss
the optimal probing policy corresponding to the property of
the target network.

The rest of the paper is organized as follows. In Section II,
we verify the cause of the phase-lock phenomenon and de-
scribe a method to assess it. Section III proposes our probing
policy with random fluctuations. In Section IV, we analyze
the relationships between the fluctuation magnitude and the
accuracy of active measurement, and confirm the validity
of the proposal by simulations. We conclude the paper in
section V.

II. EVALUATION OF PHASE-LOCK PHENOMENON

Reference [8] did not mention the factor of phase-lock
phenomenon in detail because it was not main topic of [8].
This study examines the phase-lock phenomenon in detail
because our goal is to specify the optimal probing process.
Accordingly, this section investigates the cause and effects
of the phase-lock phenomenon and introduces an evaluation
function that can assess this phenomenon appropriately.

The convex ACF r(τ) of the ground truth process X(t)
means X(t) has no special periodicity. The phase-lock phe-
nomenon occurs when the cycle of the ground truth process
synchronizes to that of the probing process. Hence, phase-lock
phenomenon will not occur if the ACF is strictly convex. This
fact was proven by (3). However, the experiments of Baccelli
et al demonstrated that there are multiple instances in which
the accuracy of the estimator of periodic-probing was worse
than that of other probing processes (periodic-probing is not
always bad).

We consider that phase-lock phenomenon is caused by
accidental periodicity which is realized by finite measure-
ment periods. Even if there is no special periodicity of
the ground truth process (in terms of long-time average),
accidental periodicity can be generated. Thus, there is a
possibility that a specific frequency component will be present
by chance if the measurement period is limited. Even if ACF
r(τ) = E[X(t)X(t + τ)] − {E[X(t)]}2 in terms of ensemble
mean (namely long-time average) is strictly convex, ACF∫ l−τ

0
X(t)X(t + τ)dt −

∫ l−τ

0
X(t)dt

∫ l−τ

0
X(t + τ)dt is, in

terms of a time average on finite period (0, l], not necessarily
convex. In Fig. 1, we display the ACF of a simple ON-OFF
process. The line of time average in Fig. 1 represents the time
average for a single sample path generated by simulation.

Therefore, the accuracy will become bad if the ground
truth process contains a lot of frequency component that
can synchronize with the probing process. Conversely, if it
contains few such frequency component so much, the accuracy
will be quite good. The accuracy of periodic-probing may
become extremely bad for the specific sample path though
it is better on average.
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Fig. 1. ACF in terms of time average and ensemble mean

Accordingly, to assess the phase-lock phenomenon appro-
priately we must consider the accuracy of the target sample
path. We assume the metric that we want to measure is the
time average X =

∫ l

0
X(t)/l dt on the measurement period

(0, l] and E[P̂ ] = X (namely bias-free) holds. By using a
conditional variance, we can express the accuracy of the target
sample path as follows.

Var[P̂ |X(t)] . (4)

According to the property of conditional variance, we get the
following equation.

E[Var[P̂ |X(t)]] = Var[P̂ ] − Var[X] . (5)

Baccelli et al proved that periodic-probing gives Var[P̂ ], the
minimal value (we introduced this in the Introduction). (5)
means that the expectation of (4) is minimized with periodic-
probing. Therefore, by using (5), we can assess the average
accuracy (in which periodic-probing has a superiority). On the
other hand, the effect of phase-lock phenomenon is that (4) is
varied with the intensity of the frequency component (which is
synchronized with the probing process). The effect of phase-
lock phenomenon can be assessed by the following:

Var[Var[P̂ |X(t)]] . (6)

This paper looks for the probing process which can avoid
extremely bad accuracy due to phase-lock phenomenon (ex-
tremely bad accuracy occurs when the ground truth process
contains high intensity of the frequency component which
is synchronized with the probing process.). In addition, the
probing process must be accurate in terms of average accuracy.
To satisfy the two above requirements (which are assessed
by (5) and (6), respectively), we introduce the following
evaluation function:

E[Var[P̂ |X(t)]] +
√

Var[Var[P̂ |X(t)]] . (7)

We define the probing process that minimizes evaluation
function (7) as the optimal probing process, and we investigate
the optimal probing process as determined by the property of
the target network.

(7) is one of the simplest evaluation functions which can
assess the phase-lock phenomenon. We can consider other
various patterns of evaluation function. For example, we can
use the square root of (6) multiplied by a constant instead of
the second term of (7). Our evaluation function is simple and
intuitive one though we cannot show that it is the best one.

III. PROPOSED PROBING METHOD WITH FLUCTUATIONS

In this section, we will propose the probing process with
fluctuations to specify the probing process that minimizes the
evaluation function (7). To avoid the phase-lock phenomenon,
fluctuated probe intervals is effective. In other words, we force
the probing process to exhibit multiple phases (i.e. variable
intervals). Actually, the Gamma-probing proposed by Baccelli
et al in [8] is one approach to adding fluctuations. In this study,
we propose a new method that takes three parameters into
consideration: measurement period, number of probe packets,
and the fluctuation magnitude. It is expected that measurement
period has a critical affect on the intensity of accidental
periodicity.

We add fluctuations that obey a normal distribution to
the timing of probe packet arrivals, while specifying the
measurement period. We assume that interval (0, l] is the
measurement period and m is the number of probe packets
sent in the measurement period. Our probing method gives the
point process of probe packet arrival {Ti} (i = 1, 2, . . . , m)
as follows.

Ti = (S + Gi) − l

⌊
S + Gi

l

⌋
, (8)

where S and Gi denote the random variables that fol-
low uniform distribution U(0, l/m) and normal distribution
N((i − 1)l/m, σ2), respectively, b·c denotes a floor function
and σ denotes the magnitude parameter of the fluctuations.
To prevent {Ti} from taking a value on the outside of the
measurement period (0, l], we added the second term. {Ti}
given by (8) occurs at an equal probability at an arbitrary
point in the measurement period (0, l]. Therefore, estimator
P̂ =

∑m
i=1 X(Ti)/m is an unbiased estimator for X .

Our probing process provides multiple selections lying be-
tween traditional PASTA-based probing and periodic-probing
as well as Gamma-probing. If σ = 0 (namely there is no
fluctuation), {Ti} corresponds to periodic-probing. On the
other hand, if σ → ∞, Ti follows a uniform distribution
U(0, l). Therefore, intervals between Ti follow an exponential
distribution for sufficiently large l.

IV. FLUCTUATION MAGNITUDE AND ACCURACY

In this section, we clarify the relationship between fluctua-
tion magnitude, which is given by the probe timing, r(τ) (a
property of the target network) and the evaluation function (7).
We then detail a method that specifies the optimal fluctuation
magnitude, theoretically. As we mentioned in Section II,
periodic-probing is the optimal probing process if we con-
sider only average accuracy. It is important to specify the
minimal fluctuation magnitude that can avoid the phase-lock
phenomenon, because large fluctuations cause the probing
process to deviate too far from periodic-probing.

Our evaluation function (7) is composed of the average
and variance of (4). Therefore, we first address the stochastic
behavior of (4).

We define X̃(t) = X(t − lbt/lc) which depends on
stochastic process X(t) in measurement period (0, l], and



T̃i = S + Gi which is composed of a simple uniform
and normal random variable. Since X(t) observed at the
timing of {Ti} is equal to X̃(t) observed at the timing of
{T̃i}, P̂ =

∑m
i=1 X̃(T̃i)/m holds. Therefore, by using ACF

R̃(τ) =
∫ l

0
X̃(t)X̃(t + τ)/l dt − {

∫ l

0
X̃(t)/l dt}2 in terms of

time average, (4) can be expressed as follows (as well as (2)).

Var[P̂ |X(t)] =
1

m2

m∑
i=1

m∑
j=1

∫ ∞

−∞
R̃(τ)fi−j(τ)dτ .

Note that R̃(τ) is a stochastic process that depends on X(t).
Furthermore, when we expand R̃(τ) in Fourier series, we

find that

Var[P̂ |X(t)]

=
1

m2

∞∑
n=1

Kn


m∑

i=1

m∑
j=1

∫ ∞

−∞
cos

(
2πn

l
τ

)
fi−j(τ)dτ

 ,

(9)

Kn =
2
l

∫ l

0

cos
(

2πn

l
τ

)
R̃(τ)dτ .

Note that {Kn} (n = 1, 2, · · · ) are random variables that
depend on X(t); they represent the intensity of each frequency
component of X(t).

Moreover, the summation in (9) reduces as follows.
m∑

i=1

m∑
j=1

∫ ∞

−∞
cos

(
2πn

l
τ

)
fi−j(τ)dτ

= m
m−1∑
i=0

∫ ∞

−∞
cos

(
2πn

l
τ

)
fi(τ)dτ

= m + m

∫ ∞

−∞
cos

(
2πn

l
τ

) m−1∑
i=1

1
2σ

√
π

e−
(τ−il/m)2

4σ2 dτ

=


m + (m2 − m)

∫ ∞
0

cos
(

2πn
l τ

)
1

σ
√

π
e−

τ2

4σ2 dτ,

n = mj (j = 1, 2, . . . )

m − m
∫ ∞
0

cos
(

2πn
l τ

)
1

σ
√

π
e−

τ2

4σ2 dτ, otherwise

=

{
m + (m2 − m)e−( 2πn

l )2
σ2

, n = mj (j = 1, 2, . . . )

m − m e−( 2πn
l )2

σ2
, otherwise

.

(10)

Substituting (10) for (9), the accuracy achieved for target
sample path Var[P̂ |X(t)] is expressed as follows using the
intensity of each frequency component {Kn} (n = 1, 2, · · · ).

Var[P̂ |X(t)] =
∞∑

i=1

wiKi , (11)

wi =


1+(m−1)e

−( 2πi
l )2

σ2

m , i = mj (j = 1, 2, . . . )

1−e
−( 2πi

l )2
σ2

m , otherwise
.

Note that K0 = 0 because
∫ l

0
R̃(τ)dτ = 0.

To clarify the average and standard deviation of
Var[P̂ |X(t)], we must investigate the stochastic behavior

of {Kn} (n = 1, 2, · · · ). Since Fourier transformation of
autocorrelation function R̃(t) + X

2
of the stochastic process

yields a power spectrum (Wiener-Khintchin theorem [12]),
F [R̃(t) + X

2
] = |F [X̃(t)]|2 holds. Consequently, Kn relates

to Fourier coefficient Cn = 2
∫ l

0
cos(2πnt/l)X(t)dt/l and

Sn = 2
∫ l

0
sin(2πnt/l)X(t)dt/l as follows.

Kn =
Cn

2 + Sn
2

2
. (12)

Note that Cn and Sn are random variables because they
depend on X(t).

Hence, by using (11) and (12), (5) which composes our
evaluation function is given as follows.

E
[
Var[P̂ |X(t)]

]
=

1
2

∞∑
i=1

wi {Var[Ci] + Var[Si]} . (13)

Similarly, if we assume Ci and Si follow normal distributions,
the other component (6) composing the evaluation function is
as follows.

Var
[
Var[P̂ |X(t)]

]
=

1
4

∞∑
i=1

∞∑
j=1

wiwj

{
Cov

(
Ci

2, Cj
2
)

+ 2Cov
(
Ci

2, Sj
2
)

+ Cov
(
Si

2, Sj
2
) }

=
1
4

∞∑
i=1

∞∑
j=1

wiwj

{
2 {Cov (Ci, Cj)}2

+ 4 {Cov (Ci, Sj)}2 + 2 {Cov (Si, Sj)}2
}

,

(14)

where the second equality follows from property of the mo-
ment of bivariate normal distributions.

Finally, if we can relate Cov(Ci, Sj), Cov(Ci, Cj) and
Cov(Si, Sj) to r(τ), we can evaluate any probing method by
our evaluation function. Calculating Cov(Ci, Sj), we have

Cov(Ci, Sj)

=
4
l2

∫ l

0

∫ l

0

cos
(

2πi

l
t

)
sin

(
2πj

l
s

)
r(s − t)dsdt

=
4
l2

∫ l

0

∫ l−t

−t

cos
(

2πi

l
t

)
sin

(
2πj

l
(τ − t)

)
r(τ)dτdt

=
2
l2

∫ l

0

∫ −τ

−l

{
sin

(
2π(j + i)

l
t +

2πj

l
τ

)
+ sin

(
2π(j − i)

l
t +

2πj

l
τ

)}
dt r(τ)dτ

+
2
l2

∫ 0

−l

∫ l

−τ

{
sin

(
2π(j + i)

l
t +

2πj

l
τ

)
+ sin

(
2π(j − i)

l
t +

2πj

l
τ

)}
dt r(τ)dτ .

Moreover, by creating two cases i = j and i 6= j and
integrating the result, we get Cov(Ci, Sj) = 0. Similarly, we
can calculate Cov(Ci, Cj) and Cov(Si, Sj) as follows.

Cov(Ci, Cj) =

{
− 2

ilπ rS,i + 4
l rC,i, (i = j)

4
lπ(j2−i2) (irS,i − jrS,j) , (i 6= j)

,
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Cov(Si, Sj) =

{
2

ilπ rS,i + 4
l rC,i, (i = j)

4
lπ(j2−i2) (jrS,i − irS,j) , (i 6= j)

,

rS,i =
∫ l

0

sin
(

2πi

l
τ

)
r(τ)dτ ,

rC,i =
∫ l

0

(
1 − τ

l

)
cos

(
2πi

l
τ

)
r(τ)dτ .

Substituting them into (13), we have

E
[
Var[P̂ |X(t)]

]
=

∞∑
i=1

4
l
wirC,i ,

Var
[
Var[P̂ |X(t)]

]
=

∞∑
i=1

{
4
l
wirC,i

}2

+
∞∑

i=1

{
2

liπ
wirS,i

}2

(15)

+
∑
i 6=j

16wiwj

(i2 + j2)
{
rS,i

2 + rS,j
2
}
− 4ijrS,irS,j

l2π2(i2 − j2)2
.

However, the second and third terms on the right-hand side
of (15) are trivial compared with the first term if we give actual
parameters to r(τ), l and m. Hence, (15) is approximated as

Var
[
Var[P̂ |X(t)]

]
'

∞∑
i=1

{
4
l
wirC,i

}2

. (16)

Now, if X(t) denotes a simple ON-OFF process whose ON
and OFF periods obey exponential distribution with param-
eters λ1 and λ2, r(τ) = (λ1λ2)/(λ1 + λ2)2 · e−(λ1+λ2)τ

is easily verified. In Fig. 2, we show the first term and
other terms on the right-hand side of (15) for the case of
(λ1, λ2, l, m) = (2, 1, 100, 100). Obviously, we can judge that
the approximation is appropriate according to Fig. 2.

Thus evaluation function e(σ) is given by the following:

e(σ) =
∞∑

i=1

4
l
wirC,i +

√√√√ ∞∑
i=1

{
4
l
wirC,i

}2

. (17)

We can plot evaluation function e(σ) if we specify the
following: measurement period l, the number of probe packets
m, the ACF r(τ) of X(t), and the fluctuation magnitude σ.
This means that we can obtain the optimal probing process as
per the properties of the target network.

Finally, we conduct simulations to assess the validity of
(17). We executed Monte-Carlo simulations that assumed
above mentioned ON-OFF processes, and we calculated (7)
directly. In Fig. 3, we display comparisons between the
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Fig. 3. Comparison of the simulation-based evaluation function and (17).

simulation-based value and (17). We can confirm that (17)
is appropriate, and we can judge that the optimal σ are 0.2.

V. CONCLUSION

In this paper, we proposed a new probing policy that can
avoid the phase-lock phenomenon by randomly perturbing the
timing of probe packets. Moreover, we defined an evaluation
function which can well assess the phase-lock phenomenon,
and we provided a method that can specify the optimal
fluctuation magnitude. Consequently, given the properties of
the target network, we can identify the optimal probing policy.

We confirmed the validity of our method through simu-
lations. In the future, we will validate the method in detail
including verification on an actual network.
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