
918
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

INVITED PAPER Special Section on Emerging Communication Technologies in Conjunction with Main Topics of ICETC 2023

Random-Based and Deep Graph Generators: Evolution and Future
Prospects

Kohei WATABE†a), Member

SUMMARY Graphs are highly flexible data structures that can model
various data and relationships. By using graphs, we can abstract and rep-
resent various things in the real world. The technology of artificially gen-
erating graphs is important in various fields where graphs are applied to
various fields in engineering, including communication networks, social
networks, and so on. In this paper, we organize and introduce graph gener-
ation techniques from early random-based methods to the latest deep graph
generators, focusing on the aspects of feature reproduction and specification.
Techniques for reproducing and specifying graph features in graph gener-
ation may provide new research methods for classical graph theory and
optimization problems on graphs. This paper also presents recent achieve-
ments that may lead to further exploration in these fields and discusses the
future prospects of graph generation.
key words: graph generation, generative model, deep graph generator,
graph feature, conditional generation

1. Introduction

The graph structure is an extremely versatile and fundamen-
tal data structure, and various things in the real world can be
abstractly represented by graphs. A graph is a mathemati-
cal structure represented by a set of nodes (vertices) and a
set of edges (links), and it can simply represent the relation-
ships between objects. In the field of transportation networks
(e.g., railway networks, bus route maps, road networks) and
communication networks (e.g., the Internet and telephone
networks), graphs have long been used as a means of mathe-
matically handling objects. In addition, human relationships
in social networks, electrical circuits in electrical engineer-
ing, and molecular structures in molecular engineering are
also represented by graphs. A tree structure is also a special
case of a graph structure, and it frequently appears in the
structure of databases, program code, and so on. In the field
of machine learning, which has made remarkable progress
in recent years, the tree structure of decision trees and the
network structure of neural networks are also representations
by graphs.

The technology of artificially generating graphs is im-
portant in various fields such as communication networks,
social networks, transportation networks, databases, molec-
ular engineering, and epidemiology. Specifically, applica-
tions include understanding interaction dynamics in social
networks [1], link prediction [2], community detection [3],

Manuscript received February 27, 2024.
Manuscript revised June 3, 2024.
Manuscript publicized August 22, 2024.
†Graduate School of Science and Engineering, Saitama Uni-

versity, Saitama-shi, 338-8570 Japan.
a) E-mail: kwatabe@mail.saitama-u.ac.jp
DOI: 10.23919/transcom.2024CEI0008

recommendation systems [4], drug discovery [5], [6], code
completion [7], and epidemic modeling [8]. In simulations
on graphs in various fields, the effectiveness of a method can
only be demonstrated by repeating simulations with a large
number of graphs that have specific features, but it is not
always possible to obtain a sufficient amount of real graph
datasets. Additionally, it can be applied to prediction tasks
by generating future graphs or non-existent graph structures,
such as predicting future social network structures, develop-
ing new drugs through the generation of unknown molecular
structures, and suggesting possible code completions from
incomplete program code.

The early graph generation techniques were based on
random algorithms, aiming to generate graphs that reproduce
a single aspect of features of real-world graphs. The first
proposed graph generation model was the Erdös-Rényi (ER)
model [9], proposed in 1959, which is a simple model that
randomly connects pre-defined nodes with edges. Around
2000, models such as the Watts-Strogatz (WS) [10] model
and the Barabási-Albert (BA) model [11] were proposed,
aiming to reproduce features such as small-worldness and
scale-free property, and they have inspired many following
models (Fig. 1). These random-based graph generators have
greatly contributed to our understanding of how these struc-
tures of small-worldness and scale-free property are created
by reproducing the feature of real-world graphswithminimal
algorithms.

With the development of deep learning-based genera-
tion techniques for image and natural language processings,
a new type of graph generation model called deep graph
generators, which learn and reproduce every aspect of fea-
tures of real-world graph data, has emerged around 2018
[12], [13]. Random-based graph generators excel in gener-
ating graphs with lightweight algorithms guaranteeing the
reproduction of a single aspect of features. However, there is
no guarantee that they will reproduce features other than the
ones they focus on. As a result, using graphs generated by
random-based graph generators as substitutes for real-world
graphs is challenging. In contrast to random-based graph

Fig. 1 The history of graph generation techniques.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

WATABE: RANDOM-BASED AND DEEP GRAPH GENERATORS: EVOLUTION AND FUTURE PROSPECTS
919

generators designed to reproduce a specific feature such as
small-worldness and scale-free property, deep graph gener-
ators aim to capture and reproduce the features of a set of
graphs provided as a dataset in every aspect.

Recently, some studies have introduced generativemod-
els capable of conditionally generating graphs with specified
features, alongsidemany deep graph generators that generate
graphs with the same features as the given dataset. Some
models including models proposed by Li et al. [14], Faez
et al. [15], and Tseng et al. [16], allow specifying the num-
ber of subgraphs with specific structures, such as rings or
hexagons. CondGen [17] is a conditional graph generator for
general graphs that can categorize graphs in a dataset by arbi-
trary semantic information and generate graphs specified by
the category. Our research group has proposed GraphTune,
which can specify a feature continuously while reproducing
the features of given graph data in every aspect [18], [19].

In this paper, we organize and introduce graph gener-
ation techniques from classical random-based generators to
the latest deep graph generators, focusing on the aspects of
feature reproduction and specification. We also discuss the
new research fields that these techniques open up. While
there are several surveys on graph generation techniques,
they have typically focused on summarizing random-based
generators [20], [21] and deep graph generators [12], [13],
separately. However, the essence of the graph generation
problem lies in sampling from the graph space, where all
potential graphs exist. Developing random-based and deep
graph generators is an attempt to explore methods to sample
graphs with specific features from the graph space homo-
geneously. This paper differs from conventional surveys by
comprehensively addressing both random-based and deep
graph generators, focusing on how each generator samples
graphs with a specific feature from the graph space. Addi-
tionally, the techniques that generate graphs with a specific
featuremay provide new researchmethods for classical graph
theory and optimization problems on graphs. This paper also
discusses the prospects of the new research methods.

The rest of this paper is structured as follows. First, in
Sect. 2, we explain how the graph generation problem is for-
mulated. Next, in Sects. 3 and 4, we introduce representative
random-based and deep graph generators, respectively. In
Sect. 5, we describe the future challenges of the current graph
generators and the direction of future research. Finally, in
Sect. 6, we conclude this paper.

2. Formulation of Graph Generation Problem

Agraph is defined as a set of nodes and edges. As a notational
convention, a graph is represented by G = (V,E), where V
and E denote a set of nodes V = {v1, v2, . . . , vn} and a set of
edges E = {(u, v) | u, v ∈ V}, respectively.

As an approach to analyzing graphs, various quantified
features representing properties of graphs have been pro-
posed and widely used in many studies. The number of
nodes |V | and the number of edges |E | can be treated as
the most primitive quantified features of graphs. In addition

Table 1 Representative graph features.

Fig. 2 Formulation of the graph generation problem.

to the features, numerous other quantified features such as
average degree, average shortest path length, and clustering
coefficient, have been proposed. Table 1 shows representa-
tive features. In applications such as social networks, there
are cases where large graphs with a large number of nodes
|V | and edges |E | are handled. In such cases, calculating
the values of the features of the graph to capture the rough
properties of the graph is an extremely effective approach.
In other words, graph features are indicators that represent
a single aspect of a graph, and the vector composed of the
features can be considered as a summarization of the graph.
There are many convenient tools for calculating features, and
calculating representative features such as those listed in Ta-
ble 1 can be easily done using graph analysis libraries such
as NetworkX [22], [23] or igraph [24].

The graph generation problem can be understood as
sampling graphs with specific features from a vast graph
space. Here, the graph space refers to a set that includes
all possible graphs, and it is possible to define distances
between graphs based on their features. In the context of
graph generation, we design a function f (θ) that takes as
input parameters θ, as illustrated in Fig. 2. The function
f (θ) corresponds to the algorithm or model for generating
graphs, and its output is a graph. The input parameters θ
define a subspace of the graph space corresponding to the
population of graphs from which the output graph is sam-
pled. The output graph of f (θ) can be regarded as a sample
from the subspace defined by the parameter θ. Depending on
an algorithm or model, the parameter θ can be given by the
user or determined by machine learning technology based
on a dataset. The subspace corresponding to θ depends on
the design of f (θ), that is, the design of the generation algo-
rithm or model. In an ideal f (θ), a subspace corresponds to

920
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

a set of graphs with specific feature values, enabling to out-
put only graphs with those specific features. This subspace
is generally vast, and it is practically difficult to examine
what kind of graphs are included in it, apart from trying to
sample graphs. It is important to note that enumerating all
graphs with specific features is generally impossible, except
in cases where the graph space is significantly constrained,
such as when the number of nodes is small. When nodes
are distinguished by node ID, there are 2 |V |(|V |−1)/2 possible
graphs for a graph with |V | nodes, leading to a combinatorial
explosion concerning the number of nodes.

3. Random-Based Graph Generators

The random-based graph generators output various graphs
by determining the connections between nodes randomly,
and many of them focus on reproducing a single aspect of
features of real-world graphs. In this section, we introduce
representativemodels of random-based graph generators and
discuss the spatial properties of the generated graphs and
issues of models.

3.1 Reproduction of the Number of Nodes and Edges

The ER model proposed in 1959 [9] is the most primitive
graph generator with an extremely simple generation algo-
rithm connecting nodes with a certain probability. The ER
model has parameters for the number of nodes n and the
probability p of connecting edges between nodes. In the
algorithm, any pair of nodes is connected with probability
p for a given set of nodes. Since edges are randomly con-
nected, the node degrees (the number of edges connected to
a node) are homogeneous, resulting in graphs without any
special nodes. Examples of a graph generated by the ER
model are shown on the left side of Fig. 3. Nodes are ar-
ranged in a circular pattern for visibility, but the links are
randomly connected, showing no significant bias in the node
degrees. The number of nodes |V | and the number of edges
|E | are the most basic features of a graph as the ER model
is designed to specify these features with n and pn(n − 1)/2,
respectively.

Fig. 3 Graphs generated by random-based generators.

Inheriting the properties of the ER model, many subse-
quent generators allow for specifying the number of nodes
|V | and edges |E |. The stochastic Block (SB) model [25]
is a model that can specify the number of nodes and edges
inherited from the ER model, and it is commonly used in
benchmark datasets for community detection algorithms.

3.2 Reproduction of Small-Worldness

In 1998, a random-based graph generation model was pro-
posed to reproduce a property called small-worldness ob-
served in real-world graphs [10]. Small-worldness refers
to the property where the average shortest path length L
between any two nodes in a graph is small relative to the
number of nodes n. This feature is commonly found in
real-world graphs such as co-authorship networks and power
grids. Specifically, a small-world network is defined as a
network in which the average path length L scales like log n.
Watts and Strogatz proposed the WS model to reproduce
small-worldness with a very simple algorithm. They start
with a ring lattice with an average degree of 2K and ran-
domly rewire each edge with probability p to another node,
generating a small-world network [10]. Examples of a graph
generated by theWSmodel are shown in themiddle of Fig. 3.
Most neighboring nodes are connected by edges, indicating
strong local connections, while some nodes are connected to
distant nodes, contributing to a graph with a small average
shortest path length. There are many models other than the
WS model that reproduce small-worldness. A representa-
tive of such a model is the extension of the WS model to a
D-dimensional lattice proposed by Biskup [26]. Addition-
ally, models that reproduce scale-free properties, which will
be introduced in the next section, mostly reproduce small-
worldness.

3.3 Reproduction of Scale-Free Property

After the proposal of the WS model to reproduce small-
worldness, a random-based generator focusing on a feature
known as the scale-free property, which appears as a power-
law distribution of node degrees, was proposed [11]. In
graphs with scale-free property such as social networks and
food web relationships, a few nodes are connected to a large
number of nodes, while many nodes are connected to only
a few nodes. More precisely, it refers to graphs where the
distribution f (k) of node degrees follows f (k) ∝ k−γ, where
2 ≤ γ ≤ 3. Albert et al. proposed the BA model [11],
starting with m complete graphs and repeatedly adding new
nodes with m edges. By connecting a new node to existing
nodes with a probability proportional to their node degree,
the BA model enables the generation of scale-free graphs
whose exponent γ of power-law distribution of node degrees
is 3. An example of a graph generated by the BA model is
shown on the right side of Fig. 3. In contrast to the ERmodel
or the WS model, the connections of edges are concentrated
on nodes located in the upper right, indicating a significant
degree of heterogeneity in node degrees.

WATABE: RANDOM-BASED AND DEEP GRAPH GENERATORS: EVOLUTION AND FUTURE PROSPECTS
921

Fig. 4 Real graphs in training dataset and graphs generated by GraphTune.

Since the proposal of the BA model, numerous mod-
els replicating scale-free properties have been suggested.
Representative models include the R-MAT model [27] and
RTG [28]. Furthermore, there are more generalized models
such as BTER [29] andDarwini [30], which allow specifying
distributions other than power-law distributions.

3.4 Spatial Properties of Graphs Generated by Random-
Based Models

As random-based generators have evolved, various aspects of
graph features, such as small-worldness and scale-free prop-
erty, have been highlighted, and quantified features have been
studied to evaluate these aspects. Commonly used quantified
features include average degree, clustering coefficient, and
modularity, in addition to the average shortest path length
used as a metric for small-worldness and the power-law ex-
ponent γ used to quantify scale-free property.

As mentioned above, there are numerous features to
summarize a graph, but there is no random-based graph
generator that faithfully reproduces or specifies all these fea-
tures. As shown in Sect. 3.2, the WS model can reproduce
a small average shortest path length relative to the network
size, though it cannot necessarily tune other features inde-
pendently. Even for tunable features (e.g., the average short-
est path length in the WS model), it is necessary to manually
tune parameters after deeply understanding the nature of the
model, the graph generation process, and the dependencies
between each feature. Therefore, it is still difficult even for
experts to generate graphs with specific features. Figure 5
calculates the features of 300 graphs generated by the WS
model with K = 2 and displays scatter plots of the pairs
of features indicated on the horizontal and vertical axes.
Additionally, the plots on the diagonal of Fig. 5 show the
distributions of each feature. When we depict the features of
graphs generated by the WS model in the aspect of multiple
features like Fig. 5, it can be seen that each feature has a high
dependency specific to the model and independent tuning
is not possible in the restriction of the model. Considering
the nature of the features, it should be possible to determine
the clustering coefficient with high freedom even when the

average shortest path length is fixed. However, only graphs
with specific values are generated in Fig. 5, indicating that
homogeneous sampling from the graph space is not achieved.

4. Deep Graph Generators

Random-based graph generators cannot reproducemany fea-
tures of real-world graphs in the multi-aspect of the features.
They have significantly influenced numerous studies by fo-
cusing on a specific feature of real-world graphs and repro-
ducing them with simple models. However, as mentioned
earlier, real-world graphs contain many features, and the fea-
tures used to represent graphs vary by domain. Even models
like the WS or BA models, which can tune specific features
with parameters, cannot tune all features simultaneously.
Additionally, each feature depends on the model and cannot
be specified independently.

Since around 2018, research on graph generation using
deep learning, called deep graph generators, has been ac-
tively pursued and these models aim to reproduce features
of graph datasets in every aspect. The background of this
trend is the rapid development of generative models in deep
learning, such as the proposal of Variational AutoEncoder
(VAE) [31] andGenerative Adversarial Network (GAN) [32]
in 2014. These models, which were earlier developed for
tasks such as image or language processing, have been ex-
tended to more complex data structures like graphs in the
late 2010s. A key technical challenge in graph generation
models is effectively inputting complex graph structures into
deep learning frameworks, which are primarily designed for
processing vectors or tensors. Various approaches have been
attempted, such as converting adjacency matrices into im-
ages or treating walks on graphs as sequence data. Another
challenge is the discrete nature of graphs, which complicates
graph generation with deep learning. To address this, meth-
ods have been developed to convert graph structures into
continuous vector representations.

4.1 Reproduction of Graphs in Datastes

Deep graph generators aim to reproduce graphs that inherit

922
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

Fig. 5 Spatial properties of graphs generated by the WS model.

the features of a graph dataset used as input. From the
perspective of reproducibility, the generated graphs should
have the same features as those of the input graph dataset
in every aspect. Therefore, the accuracy of generation is
evaluated by calculating and comparing multiple features of
the graphs in the dataset and the generated graphs. Nat-
urally, the simplest way to match features is to output the
graphs in the dataset as they are. However, this approach
is not practically meaningful, so the model is required to
generate graphs that reproduce statistical features while also
generating graphs that do not exist in the dataset efficiently.
Therefore, it is necessary to evaluate based on metrics such
as novelty, which is defined as the ratio of generated graphs
that are not present in the dataset, and uniqueness, which is
defined as the ratio of unique graphs among the generated
graphs. The superior generation model is expected to not
generate graphs that are included in the dataset and the same
graph multiple times, and novelty and uniqueness are used
to evaluate these aspects. In an actual evaluation of nov-
elty and uniqueness, it is not easy to calculate these metrics
of the generated graphs since the representations of graphs
are not unique (e.g., G1 = {{A,B,C}, {(A,B), (B,C)}} and
G2 = {{A,B,C}, {(A,C), (B,C)}} are different representa-
tions of the same graph). Isomorphic graphs that have the
same structure but different representations should be treated
as the same graph in the evaluation of novelty and unique-

ness. However, the graph isomorphism problem is known
to be computationally difficult, thus, it is necessary to use
approximate methods like the Weisfeiler-Lehman test [33].

Models that directly reproduce the features of graphs in
the dataset have been proposed since the inception of deep
graph generators [34]–[53]. Studies in the field of design-
ing molecules have been particularly active, with various
models have been proposed [34]–[40]. However, most of
these models utilize domain-specific knowledge of molecule
chemistry, making them difficult to apply to other fields. On
the other hand, several domain-independentmodels have also
been proposed, and they can be categorized based on how to
convert graphs into vectors or tensors as inputs to neural net-
works. Conversion methods include 1) using the adjacency
matrix of the graph [41]–[43], 2) converting graphs into
edge lists [44]–[47], and 3) treating walks on graphs as node
sequences [48]–[50] or edge sequences [51]–[53]. Repre-
sentative models often used as benchmarks for new methods
include GraphVAE [42], GraphRNN [48] and Graphite [46].

The model using edge sequences, a relatively recent ap-
proach, has achieved success in terms of accuracy and scal-
ability, with GraphGen [53] being a representative model.
In the edge sequence approach, walks on the graph are con-
verted into sequences of edges, which are then input into
a Recurrent Neural Network (RNN)-based deep learning
model for time-series processing, enabling graph generation.

WATABE: RANDOM-BASED AND DEEP GRAPH GENERATORS: EVOLUTION AND FUTURE PROSPECTS
923

One of the most successful graph generation models, Graph-
Gen, converts sequences of edges with Depth-First Search
(DFS) code [54], which is a sequence of edges ordered by
depth-first search. Then the edge sequence is input into a
Long Short Term Memory (LSTM) network for time-series
processing. By solving the sequence prediction task with
LSTM, it outputs the predicted sequence to achieve graph
generation.

Though most of the models mentioned above are de-
signed for undirected graphs, a part of them can be appli-
cable to directed graphs. D-VAE [50] is a representative
model that explicitly supports directed graphs, and it can
generate acyclic directed graphs by leveraging graph neural
networks. TSGG-GAN [55] is also a model that supports
directed graphs for temporal graph generation. In addition
to the two models, the models that can generate graphs with
edge labels (i.e., edge attributes like weights, types, and so
on) can be easily extended for directed graphs. In these mod-
els supporting edge labels, we can generate directed graphs
by adding edge directions as edge labels. GraphGen [53] and
GraphRNN [48] are representative models that can generate
graphs with edge labels, and You et al. [48] have mentioned
that GraphRNN can be extended to directed graphs in the
appendix of their paper. Moreover, adjacency matrix-based
models [41]–[43] may be applicable to directed graphs by
learning asymmetric adjacency matrices though they have
not mentioned it in their papers. Unfortunately, though there
are lots of models that have the potential to be extended to
directed graphs, actual evaluations with real-world datasets
are limited.

4.2 Specification of Graph Features

While many deep graph generators aim to reproduce the fea-
tures of graphs in a given dataset, models that can tune and
specify a feature within the dataset are more useful. Consid-
ering practical applications, models that can tune and spec-
ify features are more practical, such as when we evaluate the
impact of specific features in graph simulations. Naturally,
reproducing the features of real-world datasets is also impor-
tant, so models are required that can tune specific features
while reproducing the other features of graphs in the dataset
in the multi-aspect of the features. Models that can tune fea-
tures are known in the context of general generative models
as conditional generative models, which generate data with
a specific attribution that is given as a condition.

While there are models within deep graph generators
that correspond to conditional generative models capable of
tuning specific features, many of them focus on specifying
the local structure of graphs. One of the few models that can
generate general graphs regardless of the domain and achieve
conditional generation is DeepGMG [14]. In the case of
DeepGMG, it allows tuning the number of local structures
such as triangles, squares, and hexagons. Moreover, models
that adopt motif-based generation combine local structures
(motifs) as subgraphs to generate graphs, enabling tuning of
local structures similerly [56].

On the other hand, models that can tune global features
of graphs, such as average shortest path length and clustering
coefficient, which are calculated from the entire graph, are
currently limited in number. CondGen [17] is one of these
models, that categorizes graphs in a dataset and assigns se-
mantic labels to specify features. Additionally, Stoehr et
al. [57] have successfully embedded graphs into a disentan-
gled latent space. The generative model with a disentangled
latent space can be considered that features of the generated
graphs may be tuned by changing values of vectors in the
latent space. However, unfortunately, the study by Stoehr
et al. [57] does not provide an explicit method to specify
features and its specification accuracy is not very high.

Wehave proposedGraphTune [18], [19], which can tune
specific features of graphs continuously while maintaining
their overall features. Like GraphGen [53], GraphTune takes
sequences of edges converted from graphs as input and out-
put of a neural network. GraphTune achieves diverse graph
generation based on random numbers by encoding graph fea-
tures into a latent space z using a VAE and then decoding
them. The key characteristic of GraphTune is its ability to
overwrite information related to a specific feature in the la-
tent space z. By this characteristic, GraphTune is capable
of generating graphs with a specific value of a feature while
maintaining the values of the other features of graphs in a
dataset.

The experimental results validating the generated
graphs by GraphTune indicate that GraphTune can explicitly
specify the specific feature while reproducing the features
of the given dataset in every aspect. In the experiments,
GraphTune was trained on induced subgraphs with 50 nodes
sampled from the who-follows-whom graph on Twitter. Ex-
amples of graphs generated by tuning the average shortest
path length as 3.0, 4.0, and 5.0 are shown in Fig. 4 alongside
graphs used in the training. The distribution of each feature
of the generated graphs is shown in Fig. 6. In Fig. 6, the
plots in red indicate the distribution of graphs used in the
training dataset, and it can be seen that most of the generated
graphs fall within the range of the dataset’s graph distri-
bution. Additionally, it can be confirmed that the average
shortest path length of the generated graphs is concentrated
around the specified values of 3.0, 4.0, and 5.0, verifying
that GraphTune generates graphs as specified.

5. Future Directions of Graph Generation Models

5.1 Advancement of Techniques for Tuning Features

Research on graph generation has evolved from random-
based generators to deep graph generators, and it is expected
that research on conditional generation will significantly ad-
vance in the future. There has been increasing research
on techniques to generate graphs similar to those given in a
dataset, with accurate models such as NetGan and GraphGen
having emerged. On the other hand, there has been insuffi-
cient exploration of techniques for conditionally generating
graphs (i.e., specifying a feature of a generated graph). As

924
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

Fig. 6 Spatial properties of graphs generated by GraphTune.

mentioned above, research on conditional generation is very
limited, with CondGen [17] being one of the few approaches
that categorize graphs in a dataset and aim for group-specific
generation. Our proposedGraphTune establishes a technique
that provides continuous values of a feature as a condition to
themodel in the context of conditional generation techniques
of graphs.

While our proposed GraphTune is a pioneering model
that aims to tune arbitrary features of graphs, the accuracy of
feature specification is still not high, and specifying multiple
features arbitrarily remains challenging. GraphTune allows
tuning of mean values of various features, such as average
shortest path length and clustering coefficient, but unfortu-
nately, the variance of the features of the generated graphs
is not always small. The small variance leads to accuracy in
specifying the features, and the improvement of the accuracy
is a current challenge. Even for specifying features such as
the average shortest path length mentioned in the previous
section, higher accuracy is required in practical applications.
Besides of challenge in accuracy, while GraphTune can input
any feature as a condition to the model without any modi-
fication of model architecture, a part of the features and a
part of the combinations of features are difficult to specify.
EEspecially, the specification of the power-law exponent of
the degree distribution which is one of the most representa-
tive features of graphs is still difficult, so specifying it is an

important challenge.
Improvements in specification accuracy can be achieved

through several approaches, such as refining the model ar-
chitecture and improving preprocessing of input data. Many
researchers are currently exploring various approaches, and
our research group has obtained promising results through
several preliminary experiments. Regarding the model ar-
chitecture, we are considering an approach that adds a neural
network to evaluate and feedback on the specification accu-
racy of graph features generated by GraphTune [58]. By
using this additional neural network to provide feedback, an
improvement in specification accuracy is expected. On the
other hand, from the perspective of preprocessing input data,
it has been found that adding randomness to walks on graphs
can improve the specification accuracy of generated graph
features. In GraphGen and GraphTune, walks on graphs
are converted into sequences of edges ordered by depth-first
search.

Tables 2 and 3 show the results of experiments on graph
generation using GraphTune, where the algorithm for con-
verting graphs into sequences is replaced with 2nd-order
random walk. The 2nd-order random walk is a graph sam-
pling method initially proposed in node2vec [59], which is
a representative model for node embeddings (not for graph
generation). It is a random walk with a bias in the transition
probability, and it effectively captures the graph structure.

WATABE: RANDOM-BASED AND DEEP GRAPH GENERATORS: EVOLUTION AND FUTURE PROSPECTS
925

Table 2 The specification accuracy of graph feature when adding ran-
domness to the sequence conversion (number of training data: 2000, pa-
rameters: (p, q) = (1.0, 0.5)).

Table 3 The specification accuracy of graph feature when adding ran-
domness to the sequence conversion (number of training data: 200, param-
eters: (p, q) = (0.25, 4.0)).

Fig. 7 The bias α of the transition probability of a 2nd-order random
walk from node t through node v to node x.

Let us consider a random walk currently at node v, assuming
that it has traversed the edge (t, v) and is about to move to
another node (Fig. 7). The bias α(t, x) of the transition prob-
ability from node v to another node x is defined as follows:

α(t, x) =


1/p if dtx = 0,
1 if dtx = 1,
1/q if dtx = 2,

(1)

where dtx represents the shortest path length between nodes
t and x, and p and q are control parameters of the bias. The
numbers in the tables represent the RootMean Squared Error
(RMSE), where a smaller value indicates higher accuracy.
The definition of RMSE is as follows:

RMSE =
√

1
|G|

∑
G∈G

(fG − f ∗
G
)2, (2)

where G is the set of generated graphs, and fG and f ∗G are
the feature values of the generated graph G and the speci-
fied value, respectively. It can be seen that using 2nd-order
random walk improves the accuracy of generated graph fea-
tures compared to the conventional DFS-based conversion
when trained on a small dataset with 200 graphs. This re-
sult is thought to be due to the increased diversity of the
latent space by adding randomness, especially in situations
where the number of data is limited, and is a very interesting
finding. For the result of the 2nd-order random walk, we
varied p and q within the range of [0.25,4.0] and displayed
the results with the smallest RMSE in Tables 2 and 3.

Developing methods to extrapolate graphs is another

important research direction. The range of features that
can be specified in GraphTune is limited to the range of
features in the graphs included in the dataset. Specifying
features that fall outside the range of features in the graphs
in the dataset is currently challenging. One approach to
address this could be to further utilize graphs generated by
GraphTune as additional training data, thereby expanding
the range of features that can be specified.

Besides the tunability of features, applicability to large-
scale graphs is also crucial for practical applications. In the
experiments using GraphTune in Sect. 4.2, the number of
nodes of the graphs used in the training was limited to 50.
The other conditional generation models for graphs, such as
CondGen [17] and DeepGMG [14], also performed experi-
ments on small-scale graphs with a limited number of nodes
(e.g., order of 200 or less). However, in practical applications
including social networks and communication networks, the
number of nodes in the graph is often in the order of 1000
or more. Therefore, it is necessary to develop techniques
that can tune features for large-scale graphs. Though current
techniques for tuning features are not applicable to large-
scale graphs, a part of the unconditional generation models,
such as NetGAN [45], can generate large-scale graphs with
over 10,000 nodes. We consider that techniques for tuning
features can also have the potential to generate similar scale
graphs, so it is expected to develop techniques for applying
large-scale graphs by learning from these models.

5.2 Extension of Features Specification Techniques to
Other Fields

If conditional generation techniques, especially those that
allow for specifying multiple features continuously, mature,
a new research field that approaches graph analysis from
generative techniques in addition to traditional graph theory
will emerge. For example, physics has evolved through mu-
tual feedback between theoretical and experimental physics,
with theoretical hypotheses being tested in experimental
physics and experimental results being explained in theo-
retical physics. Similar to the relation between theoretical
and experimental physics, graph generation techniques are
expected to become important tools for proving hypotheses
and constructing new theories in graph theory. It will be
possible to approach various problems in traditional graph
theory, such as deriving and verifying approximations for
various graph features and elucidating relationships between
features, from a generative perspective.

In particular, techniques that allow for tuning arbitrary
features provide a new perspective on optimization problems
in traditional graph theory. For example, it becomes possible
to approach problems such as deriving and verifying approx-
imations for the relationship between average degree and
modularity, which was difficult in traditional graph theory,
from both theoretical and generative aspects. By generat-
ing graphs that have the highest modularity among graphs
with an average degree of 4, for instance, it becomes possi-
ble to derive and verify approximations for the relationship

926
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

between average degree and modularity. This ability to fix
arbitrary conditions enables a new approach to problems that
were previously challenging in traditional graph theory.

6. Conclusions

In this paper, we comprehensively reviewed graph generation
techniques that can be applied to various problems, cover-
ing both classical random-based generative models and the
recently popular deep graph generators. We particularly fo-
cused on graph features and provided a detailed explanation
of techniques for tuning graph features in various graph gen-
eration models. For future prospects, I introduced several
promising approaches to improve the accuracy when tuning
graph features in graph generation techniques, such as refin-
ing the model architecture and improving preprocessing of
input data. Additionally, I mentioned the potential of graph
generation techniques that can tune features to provide ex-
perimental feedback to classical graph theory, contributing
to the construction of new theories and the validation of
existing theories.

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant
Number JP23H03379.

References

[1] Q. Yan, L. Wu, and L. Zheng, “Social network based microblog
user behavior analysis,” Physica A: Statistical Mechanics and its
Applications, vol.392, no.7, pp.1712–1723, 2013.

[2] M.W. Ahn andW.S. Jung, “Accuracy test for link prediction in terms
of similarity index: The case ofWS and BAmodels,” Physica A: Sta-
tistical Mechanics and its Applications, vol.429, pp.177–183, 2015.

[3] S. Fortunato and D. Hric, “Community detection in networks: A
user guide,” Physics Reports, vol.659, pp.1–44, 2016.

[4] Y. Jiang, C. Huang, and L. Huang, “Adaptive graph contrastive learn-
ing for recommendation,” Proc. 29th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2023),
pp.4252–4261, 2023.

[5] Y. Li, L. Zhang, and Z. Liu, “Multi-objective de novo drug design
with conditional graph generative model,” J. Cheminform., vol.10,
no.33, 2018.

[6] J. Lim, S.Y. Hwang, S. Moon, S. Kim, and W.Y. Kim, “Scaffold-
based molecular design with a graph generative model,” Chem. Sci.,
vol.2020, no.4, pp.1153–1164, 2020.

[7] M. Brockschmidt, M. Allamanis, A.L. Gaunt, and O. Polozov, “Gen-
erative code modeling with graphs,” Proc. 7th International Confer-
ence on Learning Representations (ICLR 2019), 2019.

[8] R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics and
endemic states in complex networks,” Phys. Rev. E, vol.63, no.6,
066117, 2001.

[9] P. Erdös and A. Rényi, “On random graphs I,” Publicationes Mathe-
maticae, vol.6, no.26, pp.290–297, 1959.

[10] D.J. Watts and S.H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol.393, no.6684, pp.440–442, 1998.

[11] R. Albert and A.L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol.74, no.1, 47, 2002.

[12] X. Guo and L. Zhao, “A systematic survey on deep generative mod-
els for graph generation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.45, no.5, pp.5370–5390, 2023.

[13] F. Faez, Y. Ommi, M.S. Baghshah, and H.R. Rabiee, “Deep graph
generators: A survey,” IEEE Access, vol.9, pp.106675–106702,
2021.

[14] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learn-
ing deep generative models of graphs,” Proc. the 6th International
Conference on Learning Representations (ICLR 2018) Workshop,
2018.

[15] F. Faez, N.H. Dijujin, M.S. Baghshah, and H.R. Rabiee, “SCGG:
A deep structure-conditioned graph generative model,” PLoS ONE,
vol.17, no.11, e0277887, 2022.

[16] A.M. Tseng, N. Diamant, T. Biancalani, and G. Scalia,
“GraphGUIDE: Interpretable and controllable conditional graph
generation with discrete Bernoulli diffusion,” arXiv:2302.03790,
2023.

[17] C. Yang, P. Zhuang, W. Shi, A. Luu, and P. Li, “Conditional structure
generation through graph variational generative adversarial nets,”
Proc. 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019), 2019.

[18] S. Nakazawa, Y. Sato, K. Nakagawa, S. Tsugawa, and K. Watabe, “A
tunable model for graph generation using LSTM and conditional
VAE,” Proc. 41st IEEE International Conference on Distributed
Computing Systems (ICDCS 2021) Poster Track, 2021.

[19] K. Watabe, S. Nakazawa, Y. Sato, S. Tsugawa, and K. Nakagawa,
“GraphTune: A learning-based graph generative model with tun-
able structural features,” IEEE Trans. Netw. Sci. Eng., vol.10, no.4,
pp.2226–2238, 2023.

[20] L. da F. Costa, F.A. Rodrigues, G. Travieso, and P.R.V. Boas, “Char-
acterization of complex networks: A survey of measurements,” Ad-
vances in Physics, vol.56, no.1, pp.167–242, 2007.

[21] A. Bonifati, I. Holubová, A. Prat-Pérez, and S. Sakr, “Graph gener-
ators: State of the art and open challenges,” ACM Comput. Surv.,
vol.53, no.2, pp.1–30, 2021.

[22] A.A. Hagberg, D.A. Schult, and P.J. Swart, “Exploring network
structure, dynamics, and function usingNetworkX,” Proc. 7th Python
in Science Conference (SciPy 2008), 2008.

[23] “NetworkX - Network Analysis in Python,” https://networkx.org/
[24] “Igraph - The Network Analysis Package,” https://igraph.org/
[25] P.W. Holland, K.B. Laskey, and S. Leinhardt, “Stochastic blockmod-

els: First steps,” Social Networks, vol.5, no.2, pp.109–137, 1983.
[26] M. Biskup, “On the scaling of the chemical distance in long-range

percolation models,” Ann. Prob., vol.32, no.4, pp.2938–2977, 2004.
[27] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive

model for graphmining,” Proc. 2004 SIAM International Conference
on Data Mining (SDM 2004), pp.442–446, 2004.

[28] L. Akoglu and C. Faloutsos, “RTG: A recursive realistic graph gen-
erator using random typing,” Machine Learning and Knowledge
Discovery in Databases, Lecture Notes in Artificial Intelligence,
vol.5781, pp.13–28, 2009.

[29] T.G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri, “A scalable
generative graph model with community structure,” SIAM J. Sci.
Comput., vol.36, no.5, 2014.

[30] S. Edunov, D. Logothetis, C. Wang, A. Ching, and M. Ka-
biljo, “Darwini: Generating realistic large-scale social graphs,”
arXiv:1610.00664, 2016.

[31] D.P. Kingma and M. Welling, “Auto-encoding variational bayes,”
Proc. 2nd International Conference on Learning Representations
(ICLR 2014), 2014.

[32] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Proc. 27th International Conference on Neural Information Process-
ing Systems (NIPS 2014), 2014.

[33] N.T. Huang and S. Villar, “A short tutorial on the Weisfeiler-Lehman
test and its variants,” Proc. 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2021), 2021.

[34] M.J. Kusner, B. Paige, and J.M.Hernández-Lobato, “Grammar varia-
tional autoencoder,” Proc. 34th International Conference onMachine
Learning (ICML 2017), 2017.

WATABE: RANDOM-BASED AND DEEP GRAPH GENERATORS: EVOLUTION AND FUTURE PROSPECTS
927

[35] Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt, “Constrained
graph variational autoencoders for molecule design,” Proc. 32nd
Conference on Neural Information Processing Systems (NeurIPS
2018), 2018.

[36] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational au-
toencoder for molecular graph generation,” Proc. 35th International
Conference on Machine Learning (ICML 2018), 2018.

[37] N.D. Cao and T. Kipf, “MolGAN: An implicit generative model
for small molecular graphs,” Proc. 35th International Conference on
Machine Learning (ICML 2018) Workshop, 2018.

[38] M. Popova, M. Shvets, J. Oliva, and O. Isayev, “MolecularRNN:
Generating realistic molecular graphs with optimized properties,”
arXiv:1905.13372, 2019.

[39] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “GraphAF:
A flow-based autoregressive model for molecular graph genera-
tion,” Proc. 8th International Conference on Learning Representa-
tions (ICLR 2020), 2020.

[40] W. Jin, R. Barzilay, and T. Jaakkola, “Hierarchical generation of
molecular graphs using structural motifs,” Proc. 37th International
Conference on Machine Learning (ICML 2020), 2020.

[41] T.Ma, J. Chen, and C. Xiao, “Constrained generation of semantically
valid graphs via regularizing variational autoencoders,” Proc. 32nd
Conference on Neural Information Processing Systems (NeurIPS
2018), 2018.

[42] M. Simonovsky andN.Komodakis, “GraphVAE:Towards generation
of small graphs using variational autoencoders,” Proc. 27th Interna-
tional Conference on Artificial Neural Networks (ICANN 2018),
2018.

[43] S. Fan and B. Huang, “Conditional labeled graph generation with
GANs,” Proc. 7th International Conference on Learning Represen-
tations (ICLR 2019) Workshop, 2019.

[44] T.N. Kipf and M. Welling, “Variational graph auto-encoders,” Proc.
30th Annual Conference on Neural Information Processing Systems
(NIPS 2016) Workshop, 2016.

[45] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “NetGAN:
Generating graphs via random walks,” Proc. 35th International Con-
ference on Machine Learning (ICML 2018), 2018.

[46] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative Genera-
tive Modeling of Graphs,” Proc. 36th International Conference on
Machine Learning (ICML 2019), 2019.

[47] A. Gamage, E. Chien, J. Peng, andO.Milenkovic, “Multi-MotifGAN
(MMGAN): Motif-targeted graph generation and prediction,” Proc.
2020 IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP 2020), 2020.

[48] J. You, R. Ying, X. Ren, W.L. Hamilton, and J. Leskovec,
“GraphRNN: Generating realistic graphs with deep auto-regressive
models,” Proc. 35th International Conference on Machine Learning
(ICML 2018), 2018.

[49] S.Y. Su and H. Hajimirsadeghi, “Graph generation with variational
recurrent neural network,” Proc. 33rd Conference on Neural Infor-
mation Processing Systems (NeurIPS 2019) Workshop, 2019.

[50] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-VAE:
A variational autoencoder for directed acyclic graphs,” Proc. 33rd
Conference on Neural Information Processing Systems (NeurIPS
2019), 2019.

[51] D. Bacciu, A. Micheli, and M. Podda, “Graph generation by sequen-
tial edge prediction,” Proc. 27th European Symposium on Artificial
Neural Networks (ESANN 2019), 2019.

[52] D. Bacciu, A. Micheli, and M. Podda, “Edge-based sequential
graph generation with recurrent neural networks,” Neurocomputing,
vol.416, no.27, pp.177–189, 2020.

[53] N. Goyal, H.V. Jain, and S. Ranu, “GraphGen: A scalable approach
to domain-agnostic labeled graph generation,” Proc.WebConference
2020 (WWW 2020), pp.1253–1263, 2020.

[54] X. Yan and J. Han, “gSpan: Graph-based substructure pattern min-
ing,” Proc. 2002 IEEE International Conference on Data Mining
(ICDM 2002), 2002.

[55] S. Yang, J. Liu, K.Wu, andM. Li, “Learn to generate time series con-
ditioned graphs with generative adversarial nets,” arXiv:2003.01436,
2020.

[56] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D.K. Duvenaud,
R. Urtasun, and R. Zemel, “Efficient graph generation with graph
recurrent attention networks,” Proc. 33rd Conference on Neural In-
formation Processing Systems (NeurIPS 2019), 2019.

[57] N. Stoehr, M. Brockschmidt, J. Stuehmer, and E. Yilmaz, “Disentan-
gling interpretable generative parameters of random and real-world
graphs,” Proc. 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019) Workshop, 2019.

[58] T. Yokoyama, Y. Sato, S. Tsugawa, and K. Watabe, “An accurate
graph generative model with tunable features,” Proc. 32nd Inter-
national Conference on Computer Communications and Networks
(ICCCN 2023) Poster Session, 2023.

[59] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” Proc. 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2016), pp.855–864,
2016.

Kohei Watabe received his B.E. and M.E.
degrees in Engineering from Tokyo Metropoli-
tan University, Tokyo, Japan, in 2009 and 2011,
respectively. He also received the Ph.D. degree
fromOsaka University, Japan, in 2014. He was a
JSPS research fellow (DC2) from April 2012 to
March 2014. He was an Assistant Professor of
the Graduate School of Engineering, Nagaoka
University of Technology, from April 2014 to
October 2019. He was an Associate Professor of
the Graduate School of Engineering, Nagaoka

University of Technology, since November 2019. He has been an Associate
Professor of the Graduate School of Science and Engineering, Saitama
University, since April 2024. He is a member of the IEEE and the IEICE.

