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Abstract—In the field of communication network management,
graph-based simulations using network topology models repre-
sented as graphs are widely adopted. In graph-based simulations,
because there is a limited number of real network graph data that
researchers and experts can access, the technique of generating
graphs that mimic the features of real networks using graph
generative models is essential. In this context, machine learning-
based graph generative models have been rapidly advancing
recently. In particular, in terms of the accuracy of reproducing
the features of generated graphs, sequence data-based graph
generative models have been successful. In this paper, we propose
a method based on 2nd-order random walk as an alternative to
DFS code, which is used for graph-to-sequence conversion in
GraphTune, one of the sequence data-based graph generative
models. We conducted experiments on a small dataset with
limited diversity on a real graph dataset and confirmed that
the model using the proposed method is at best 54.68% more
accurate than the model using the conventional method.

Index Terms—Graph-to-sequence, Graph generation, Condi-
tional VAE, Graph feature, Generative model.

I. INTRODUCTION

In the management and operation of communication net-
works, it is often necessary to prepare a network topology
model represented as a graph for simulation and performance
evaluation. Graph representation is a common method of
representing network topology, and graph-based simulation
is widely adopted. While it is desirable to use real network
data as graph data, researchers and experts may not have
access to graph data for all real networks. Moreover, available
graph data (e.g., topological data held by telecommunication
carriers) may not always have the number, scale, or features
that are desirable for simulation or performance evaluation,
mainly due to security issues. When it’s not possible to obtain
graph data from real networks that meet the desired conditions,
experiments are conducted using artificially generated graph
data created through graph generative models to simulate the
features of real networks.

Historically, stochastic generative models utilizing pre-
defined probabilities for edges and nodes have been explored
as methods to artificially reproduce network topology struc-
tures. Various models, including Erdős-Rényi (ER) model [1],

Watts-Strogatz (WS) model [2], and Barabási-Albert (BA)
model [3], have been proposed [4]. However, many of these
stochastic models focus solely on capturing specific single
structural features of graphs, such as randomness [1], small
worldness [2], scale-free features [3], and clustered nodes [5],
with high accuracy.

On the other hand, machine learning-based graph generative
models, which have rapidly advanced in recent years, aim to
use machine learning techniques to learn the features of real
networks and reproduce those features comprehensively across
all aspects, thereby generating graphs with features more
similar to those of real networks. These studies have succeeded
in simultaneously reproducing various features reflecting the
global structure of graphs, such as the average shortest path
length, clustering coefficient, and power-law exponent of the
degree distribution [4], [6]–[16].

Among machine learning-based graph generative models,
sequence data-based models, including our previously pro-
posed GraphTune [17], have achieved particular success in
terms of feature reproduction accuracy [6]–[8], [13]. In these
models, graphs are converted into sequential data and pro-
cessed using recurrent neural networks to learn the graph’s
features. GraphTune is a conditional graph generative model
that not only reproduces the features of the graphs used for
training but also allows for the continuous tuning of generated
graph features by specifying the value of features.

In previous evaluations of GraphTune, there has been no
evaluation regarding the accuracy of the conversion method
from graphs to sequential data. GraphTune uses Depth-First
Search (DFS) code for the conversion from graphs to sequen-
tial data, demonstrating a high tuning accuracy in metrics such
as the average shortest path length. However, it is unclear
whether the DFS code can efficiently represent the structure of
the graph because it cannot represent the relationships among
neighboring nodes in a sequence because the order of node
selection is lexicographic. Additionally, the conversion process
to sequences lacks randomness, potentially leading to sparse
sequence spaces and impacting the generation accuracy of
graphs not in the training data.
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Fig. 1. Sequence of DFS code converted from an example graph.

In this paper, we propose a conversion method based on
2nd-order random walk instead of the DFS code-based graph-
to-sequential data conversion employed in GraphTune. 2nd-
order random walk is a technique that assigns weights to the
selection probabilities of the next nodes in a random walk,
incorporating both DFS-like and BFS (Breadth-First Search)
strategies for node selection. 2nd-order random walk method,
as adopted in node2vec [18], a representative model of node
embedding, is known to effectively capture relationships with
neighboring nodes in sequences based on its parameters. To the
best of our knowledge, there have been no previous applica-
tions of 2nd-order random walk in the field of conditional graph
generation, and the impact of the random walk property on the
accuracy of graph generation has not yet been investigated.

The rest of this paper is structured as follows: In Section II,
we present an overview of the GraphTune model. The pro-
posed method is detailed in Section III. Section IV shows the
evaluation experiments conducted for the proposed method.
Finally, in Section V, we discuss the conclusions of this paper
and outline future research directions.

II. GRAPHTUNE

GraphTune handles graph data as sequence data converted
through a graph-to-sequence conversion method based on DFS
code. The converted sequence data are processed by a Con-
ditional Variational AutoEncoder (CVAE), which learns the
reconstruction process of the input sequence. As a notational
convention, a graph is represented by G = (V,E), where V
and E denote a subset of nodes V ⊆ {v1, v2, . . . , vn} and a
subset of edges E ⊆ {(x, y) |x, y ∈ V }, respectively.

A. DFS Code

In the conversion by DFS code, each node is given a
timestamp by DFS, starting from 0. That is, each node
vi (i = 0, 1, . . . ) receives a timestamp tvi = (0, 1, . . . , |V |−1)
in the order it is discovered during the DFS. When a new
timestamp is assigned during the DFS, traversed edges are
stored in a sequence called the DFS traversal. For Fig. 1, the
DFS traversal consists of (v0, v1), (v1, v2), (v1, v3), and the
node timestamps are assigned as follows: tv0 = 0, tv1 = 1,
tv2 = 2, tv3 = 3. Edges included in the DFS traversal are
called forward edges, while the rest are called backward edges.
Based on the timestamps of nodes, an edge e = (u, v) can be
represented as (tu, tv, L(u), L(e), L(v)), where tu and L(·)
denote the timestamp of node u and the labels of nodes or
edges, respectively.
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Fig. 2. The architecture of GraphTune [17].

Based on the order of graph traversal, DFS code constructs
a sequence that includes all the edges within the graph. To
construct a sequence that includes all the edges, backward
edges (u, u′) are inserted within the sequence generated by
DFS code between the forward edges (w, u) and (u, v). If
there are multiple backward edges such as (u, u′) and (u, u′′),
the timestamps of u′ and u′′ are compared, and the one with
the smaller timestamp is placed first. As a result, with an edge
e = (u, v), the graph is represented as a unique sequence of
5-tuples (tu, tv, L(u), L(e), L(v)).

B. Model Architecture

GraphTune consists of a CVAE with an LSTM-based en-
coder and decoder, as illustrated in Fig. 2. During training, the
model takes a set of sequence data Si = s0, s1, . . . obtained
by converting a graph dataset G into DFS codes as input.
Simultaneously, it computes the desired graph features, which
are provided to the model as a set of condition vectors C.
Following the architecture of a standard VAE, the encoder
Fenc(Si,Ci) maps the sequence data Si to parameters µ
and σ2. The latent vector z is sampled from a multivariate
normal distribution, denoted as N (µ,σ2). On the other hand,
the decoder Fdec(z,Ci) learns to reconstruct the original
sequence Si, generating the reconstructed sequence S̃i.

During the generation process after training, we provide a
condition vector C∗ whose elements are feature values we
intend to specify and a latent vector z randomly sampled from
a multivariate normal distribution N (0, I) to the decoder. The
decoder then generates sequence data Ŝ corresponding to a
graph with features according to C∗. The operation of the
decoder can be summarized as follows:

z ∼ N (0, I), Ŝ = Fdec(z,C
∗). (1)

III. PROPOSED METHOD

In this section, we explain a graph-to-sequence conversion
method specifically designed for graph generation, utilizing
2nd-order random walks.

A. 2nd-Order Random Walk

The 2nd-order random walk is a graph sampling method
initially proposed in node2vec [18], which is a representative
model for node embeddings. It allows for flexible exploration
compared with pure random walks by introducing bias to the
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Fig. 3. Illustration of a step of a 2nd-order random walk.

random walk. In the 2nd-order random walk, two parameters,
denoted as p and q, are used to weight the transition proba-
bilities of nodes. Let us consider a random walk currently at
node v which is about to traverse the edge (t, v) and move to
another node (Fig. 3). Let the weight of edge (v, x) be wvx (in
an unweighted graph, wvx = 1). The unnormalized transition
probability from node v to another node x is expressed as
πvx = αpq(t, x) · wvx, where αpq denotes the search bias for
transition probabilities and is defined as follows:

αpq =


1/p if dtx = 0,

1 if dtx = 1,

1/q if dtx = 2,

(2)

where dtx denotes the shortest path length between nodes t
and x, with a value of one among 0, 1, 2.

The parameters p and q in the 2nd-order random walk are
referred to as the return (inward) hyper-parameter and in-
out hyper-parameter, respectively, which control the order of
node exploration. p governs the likelihood of revisiting the
node visited just before, while q regulates the probability of
exploring more distant parts of the graph.

• BFS-like conversion: By setting p < min(1, q), the 2nd-
order random walk is encouraged to take a step back,
promoting the tendency to backtrack, which helps main-
tain a localized walk by returning to the source node t.

• DFS-like conversion: By setting q < min(1, p), the 2nd-
order random walk is encouraged to head toward more
distant nodes, promoting the tendency to explore further,
which enables the capture of the homophily of nodes (i.e.,
the property that nodes belonging to similar communities
are embedded in close vectors in the feature space).

B. Graph-to-Sequence Conversion

In our proposed method, we suggest using a 2nd-order
random walk as an alternative to the DFS code employed
in the graph-to-sequence conversion, as done in GraphTune.
More specifically, this is achieved by replacing the conversion
through DFS, as described in Section II-A, with the 2nd-
order random walk explained in Section III-A. To evaluate
the impact of the graph-to-sequence conversion method, the
format of the data obtained through the conversion remains
the same as the 5-tuples (tu, tv, L(u), L(e), L(v)) described
in Section II-A. Thus, the assumptions used in this paper are
the same as those in the original GraphTune paper [17], except
for those indicated in this paper.

One of the anticipated advantages of adopting the 2nd-order
random walk is the potential utilization of structural features of

graphs that were not captured by the DFS-based conversion. In
GraphTune [17], the use of DFS code follows GraphGen [13],
but the superiority of DFS in the graph-to-sequence conversion
has not been sufficiently validated. By using the 2nd-order
random walk, it is expected that by adjusting the parameters, a
sequence representation that combines BFS-like and DFS-like
characteristics can be obtained.

Another anticipated advantage of using the 2nd-order ran-
dom walk is the introduction of randomness in the conversion
to sequence data. While the sequence data obtained through
DFS code is unique for a given graph, our proposed method
uses the 2nd-order random walk, which results in sequence data
that includes randomness for a single graph. As a result, this
reduces the sparsity of data in the space of converted sequence
data and increases the diversity of sequence data converted
from the graph. Consequently, it is expected to enable robust
learning for small datasets with limited data diversity.

IV. EXPERIMENTS

Using the graph-to-sequence conversion with the 2nd-order
random walk, we train a conditional graph generative model on
real graphs and compare the results with the conventional DFS
code-based learning. This allows us to investigate the impact
of the randomness in the graph-to-sequence conversion on the
accuracy of conditional graph generation. In this section, we
adopt GraphTune [17] as a graph generative model and vali-
date the accuracy using the proposed conversion method from
graphs to sequence data. Through experimental results, we
demonstrate that our approach outperforms the conventional
DFS code, especially for a small datasets.

A. Dataset

To evaluate the performance of graph-to-sequence conver-
sion methods on real graphs, we use the same graph dataset
as the original GraphTune [17] for evaluation. The graphs
in this dataset are sampled from the Twitter “who-follows-
whom” graph of the Higgs Twitter Dataset [19]. Detailed
information about the sampling method is provided in the
original GraphTune paper. We divide this dataset into two
subsets: the training and the validation sets. In the original
GraphTune paper, the size ratio between the training and the
validation set is 90% and 10%, respectively, for a total of
2000 graphs. However, in this study, to specifically assess the
robustness for a small dataset, we configure both the training
and validation sets to 10%.

B. Parameter Settings

The parameters p and q of the 2nd-order random walk
for our proposed method are varied within the range of
[0.25, 0.50, 1.00, 2.00, 4.00], and the performance is evaluated
for all combinations of p and q. To mitigate the impact of
random effects during dataset creation and training, models are
trained 10 times for each combination of p and q values. The
evaluation is then conducted on the basis of the average and
standard deviation of accuracy over these 10 trained models.



In addition, the structural features given as conditions for the
graphs generated by GraphTune are specified as the average
shortest path length. The specified condition is to generate
graphs with average shortest path lengths of 3, 4, and 5. A
total of 3,300 graphs are generated for each specified value,
and the generated graphs are evaluated for errors from the
specified conditions. On the other hand, for the hyperparam-
eters of GraphTune other than those mentioned above, those
recommended in the original GraphTune paper [17] are used.

C. Performance Metrics

Since GraphTune is a generative model that allows features
to be specified depending on condition, its performance can
be measured by the accuracy of the specification by condition.
Therefore, the performance metric used for evaluation is the
Root Mean Squared Error (RMSE) between the specified
values and the feature values of the generated graphs (i.e.,
average of shortest path length). The average and standard
deviation of RMSE are calculated for each set of parameters
p and q for the 2nd-order random walk and used for evaluation.

D. Performance Evaluation

In this section, we evaluate the specified accuracy of the
structural features of the graphs generated by GraphTune using
the proposed method with the RMSE metric, as described in
Section IV-C.

The RMSE values for models using the conventional DFS
code and those using the proposed method are shown in Fig.4.
Bold values in Fig. 4 indicate that these values represent
the best average values in the figure. As observed in Fig. 4,
the RMSE values are consistently smaller for the proposed
method in all corresponding cases, demonstrating the ability
of the proposed method to accurately specify the features of
the generated graphs. The improvement in RMSE shows a
maximum decrease of up to 54.68%, 47.41%, and 50.51%,
respectively. Additionally, focusing on the combinations of p
and q in Fig. 4, when q > 1 > p, indicating a more “BFS-like”
parameters, the results tend to be more accurate.

The above results are from the small dataset, which has a
smaller number of graphs than the dataset used in the original
GraphTune paper. When using a dataset of the same size
as that in the paper, the improvement in accuracy was not
significant compared with the results above. This suggests that
the introduced randomness in the proposed method effectively
mitigates the sparsity issue in the sequence space converted
from graphs, which is especially noticeable in small datasets,
and enhances the accuracy of the generative model.

V. CONCLUSIONS

In this paper, we replaced the conventional DFS-based
method with the 2nd-order random walk-based method for
graph-to-sequence conversion in the sequence-based graph
generative model, GraphTune, and evaluated the generation
accuracy. In the evaluation process, we used real network
datasets and evaluated the accuracy of specifying the fea-
tures of the generated graphs using GraphTune. From the
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Fig. 4. RMSE values for GraphTune models using DFS code and heatmaps
of RMSE for the models using the proposed method.

results of the evaluation, it was confirmed that a significant
improvement in accuracy, particularly for small datasets with
a limited number of graphs, was observed. We observed a
maximum improvement of 54.68% in accuracy compared with
the conventional graph-to-sequence conversion method, DFS
code. The results of this study suggest that the randomness
introduced during the conversion to sequences can mitigate
the sparsity issues in the data space. Future challenges in-
cludes validation of the proposed method on more datasets
of different sizes and domains, validation for more sequence-
based models other than GraphTune, and the introduction of
new evaluation metrics.
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