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PAPER

On Optimal Magnitude of Fluctuations in Probe Packet Arrival
Intervals∗

Kohei WATABE†a), Student Member and Masaki AIDA††b), Member

SUMMARY Active measurement is an end-to-end measurement tech-
nique that can estimate network performance. The active measurement
techniques of PASTA-based probing and periodic-probing are widely used.
However, for the active measurement of delay and loss, Baccelli et al. re-
ported that there are many other probing policies that can achieve appro-
priate estimation if we can assume the non-intrusive context (the load of
the probe packets is ignored in the non-intrusive context). While the best
policy in terms of accuracy is periodic-probing with fixed interval, it suffers
from the phase-lock phenomenon created by synchronization with network
congestion. The important point in avoiding the phase-lock phenomenon
is to shift the cycle of the probe packet injection by adding fluctuations. In
this paper, we analyse the optimal magnitude of fluctuations correspond-
ing to the given autocovariance function of the target process. Moreover,
we introduce some evaluation examples to provide guidance on designing
experiments to network researchers and practitioners. The examples yield
insights on the relationships among measurement parameters, network pa-
rameters, and the optimal fluctuation magnitude.
key words: active measurement, fluctuation, probe packet, periodicity

1. Introduction

Packet loss rate and delay are important factors that decide
service performance since high values can trigger the drop-
ping of audio and video frames, particularly in real time
communication services like video conferencing. Conse-
quently, a detailed analysis of the loss and delay generated in
actual networks has obvious benefits for the design of loss
and delay sensitive applications, and it is useful also from
the viewpoint of traffic management. However, it is inher-
ently difficult to gather information related to loss and delay,
because the Internet is composed of multiple networks that
are managed by different Internet Service Providers (ISP) or
other organizations. Therefore, we need a way that offers
end-to-end measurements of the Quality of Service (QoS),
which includes delay and loss.

Active measurement is an end-to-end measurement
technique that can estimate the QoS of a network path. Ac-
tive measurement derives the QoS from information ob-
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tained by injecting probe packets into the target network
path [1]–[5]. From the delay/loss experienced by probe
packets, active measurement can estimate one-way delay,
Round-Trip Time (RTT), and loss rate on the network path.
It can also estimate link capacity [6], [7] and available band-
width [8], [9] from changes in the delay or interval of the
probe packets.

Active measurement is easy for the end user to perform
but it is not trouble free due to the tradeoff between accuracy
and the number of probe packets. The load of the probe
packets affects the path’s performance. We cannot estimate
the true performance since that state occurs only without the
probe stream. If we inject a lot of probe packets to increase
the probing rate, the estimation accuracy would suffer since
the extra traffic becomes appreciable. We do not deal here
with the overheads imposed by the probe stream, but we
state that a high probing rate does not necessarily provide
accurate measurement. A detailed discussion of overheads
is given in reference [10]. Moreover, active measurements
have great difficulty in determining the average loss rate be-
cause packet loss is a rare event and the rate is low in most
current networks, especially in the Internet core. Long de-
lay events are as rare as packet loss, and require many probe
packets for detection.

Therefore, it is important to be able to achieve highly
accurate measurements with a limited number of probe
packets. Then many prior works focus on the optimization
of the operation to provide more accurate estimation [11]–
[17].

Work by Baccelli et al. [11], [12] gave an important
suggestion on the accuracy of active measurement in as-
sessing delay and loss. Two methods are now popular for
determining probe timing in active measurement: PASTA-
based probing and periodic-probing. PASTA-based probing
is the probing policy that follows the well-known PASTA
(Poisson Arrivals See Time Averages) property [18], i.e. the
packet injection is a Poisson process (arrival intervals follow
an exponential distribution), and periodic-probing is based
on fixed probe packet intervals. A comparison of PASTA-
based probing and periodic-probing was discussed in RFC
[19] and prior work [20]. The works showed that periodic-
probing might achieve more accurate measurement com-
pared with PASTA-based probing though it can become syn-
chronized with the target. The above discussions consider,
however, only two alternatives. In recent work [11], Bac-
celli et al. indicated that there might be many other probing
policies that can estimate true performance values given the
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assumption of a non-intrusive context (the extra traffic of
probe packets can be ignored). Moreover, according to the
result in reference [12], the best policy in terms of accuracy
is periodic-probing under the general condition. However,
it may not be best overall because of the synchronization
problem (the problem is referred to as the phase-lock phe-
nomenon). To solve this problem, Baccelli et al. [12] pro-
posed a probing policy that makes the probe packet intervals
follow a parameterized Gamma distribution.

That is, Baccelli et al. provided multiple selections
other than traditional PASTA-based probing and periodic-
probing, and they suggested that the optimal probing pol-
icy might be one of the selections. The work has a serious
problem with regard to practical measurements even though
it represents a great advance in network measurement. Its
weakness was that it failed to specify the optimal parameter
of the Gamma distribution. Therefore, Gamma-probing has
been unable to establish optimal probing policies.

In this paper, to provide guidance to researchers and
practitioners regarding how they should inject probe pack-
ets, we analyse the fluctuation magnitude of optimal prob-
ing policy and clarify the relationships between the optimal
fluctuation magnitude and the properties of the target pro-
cess. The important point in avoiding synchronization is to
shift probe packet periodicity by fluctuations. Baccelli et al.
shift the periodicity by using a Gamma distribution to de-
termine probe packet intervals. In our study, we introduce
a probing policy that fluctuates the probe intervals by using
a normal distribution and determine the optimal fluctuation
magnitude for the target process. Our analysis is composed
of the following three steps.

1. To define the optimal magnitude of fluctuations that are
added to the timing of probe packets, we define an eval-
uation function that takes the phase-lock phenomenon
into consideration.

2. We show our evaluation function is determined by the
autocovariance function (ACF) of the target process
and the probing policy. Moreover, we clarify the re-
lationships between the optimal magnitude of fluctua-
tions and ACF of target process.

3. We show some evaluation examples in which we
change ACF, measurement period, and the number of
probe packets variously. We provide some insights
by clarifying the dependency of the optimal fluctua-
tion magnitude on network/measurement parameters.
These insights are useful for network researchers and
practitioners in order to design experiments. Espe-
cially, for a situation where it is hard obtaining the
knowledge of ACF on real measurement, we present
the design criteria on the safe side in order to avoid the
phase-lock phenomenon for various ACF.

We provide a detailed mathematical proof and simulation re-
sults on the validity of our method. We used some approx-
imations to simplify the derivation of the optimal probing
policy. Mathematical and simulation-based analyses show
that the approximations are valid.

The rest of the paper is organized as follows. Section 2
introduces some prior works regarding probing strategies.
Next, in Sect. 3, we verify the cause of the phase-lock phe-
nomenon and describe a method to assess it. Section 4 ex-
plains probing policy with fluctuated probe intervals. Sec-
tion 5 analyzes the relationships between fluctuation magni-
tude and the accuracy of active measurement, and provides
a method to specify the optimal fluctuation magnitude. We
confirm the validity of our approximations that we use to
derive the optimal probing, through M/M/1 simulation, and
show evaluation examples in Sect. 6. In Sect. 7, we discuss
the generality of our results. We conclude the paper in
Sect. 8.

2. Probing Policy and Accuracy of the Estimator

In this section, we overview the current state-of-the-art by
introducing some prior works on probing strategies for ac-
tive measurement.

PASTA-based probing and periodic-probing have been
widely used as the probing policies for active measurement.
These probing policies are described in RFCs [3], [19], re-
spectively, and Roughan’s work provided a comparison of
the two policies [20] (periodic-probing is called uniform
sampling in this). The key features of the PASTA-based
probing and periodic-probing are as follows.

• PASTA-based probing; The probe packet intervals
follow an exponential distribution, i.e. the probe packet
arrivals process follows a Poisson arrival. It can pro-
vide bias-free measurement because of the PASTA
property [18] but may be inferior in terms of estima-
tion accuracy.
• Periodic-probing; This probing policy uses fixed

probe packet intervals. It is easier to manipulate, and it
may be superior to PASTA-based probing in terms of
accuracy in many cases. However, it can suffer from
the problem of synchronization with the target being
measured.

It is unknown to this author how prevalent periodicities are
in the modern Internet. However, some works reported theo-
retical grounds for their existence [21], [22]. Hence, there is
the tradeoff between the two policies, and we cannot judge
which probing policy is better.

Baccelli et al. investigated alternatives to the above two
probing policies, and suggested that there are better policies
than these two probing policies. They indicate that there
are many distributions other than PASTA-based probing that
can provide bias-free measurements if a non-intrusive con-
text (the load of probe packets is insignificant) can be as-
sumed [11]. This property is named Non-Intrusive Mixing
Arrivals See Time Averages (NIMASTA). NIMASTA con-
tains the following three assumptions.

1. The stochastic process that expresses the network state
we are interested in (e.g. virtual delay and loss/no-loss
indication) is stationary and ergodic. This process is
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called the ground truth process.
2. The point process of probe packet arrivals {Ti} (i =

1, 2, . . . ,m) is stationary and mixing. Mixing is the re-
quirement that guarantees joint ergodicity between the
probe and ground truth processes (see reference [11]
for details).

3. The last assumption is the non-intrusive context, i.e.
we can ignore the impact of probe packet overhead.
Namely, the ratio of the probe stream (extra traffic) to
all streams is very small.

Under the above assumptions, it was proved that the
following equation holds:

lim
m→∞

1
m

m∑
i=1

h(X(Ti)) = E[h(X(0))] a.s., (1)

where X(t) and h are the ground truth process and an arbi-
trary positive function, respectively. If we can obtain X(Ti)
(e.g. the delay of the probe packet or loss/no-loss of probe
packet) from a probe packet injected at time Ti, (1) means
that we can estimate E[h(X(0))] without bias by the injec-
tion of m probe packets. The only requirements placed on
the point process of probe packet arrival {Ti} (i = 1, 2, . . . )
are that it be stationary and mixing. Therefore, there are
many point processes that can achieve unbiased estimation
of ensemble mean E[h(X(0))] besides PASTA-based prob-
ing, inter-probe time follows an exponential distribution.
Such mixing point processes include those whose intervals
follow a Gamma distribution and a uniform distribution.
Note that periodic-probing with fixed interval is not a mix-
ing process, and does not satisfy (1).

Recent work [12] investigated how to select the optimal
probing process. We can select the optimal (in terms of ac-
curacy) probing process under a specific assumption by us-
ing the inter-probe time given by the parameterized Gamma
distribution.

If we estimate the mean of X(0) by using active mea-
surement, the estimator P̂ is

P̂ =
1
m

m∑
i=1

X(Ti).

Thus the variance of P̂ is

Var[P̂] =
1

m2
Var

⎡⎢⎢⎢⎢⎢⎣
m∑

i=1

X(Ti)

⎤⎥⎥⎥⎥⎥⎦
=

1
m2

m∑
i=1

m∑
j=1

Cov
(
X(Ti), X(T j)

)

=
1

m2

m∑
i=1

m∑
j=1

∫ ∞
−∞

r(τ) fi− j(τ)dτ, (2)

where fi− j is the probability density function (pdf) of Ti−T j,
r(τ) = Cov (X(t), X(t + τ)) is the ACF of the ground truth
process X(t) (we can express r(τ) by τ alone, because X(t) is
stationary) and the last equality follows from the stationary

property of X(t) and the probe packet process.
It was proved that no other probing process with an

average interval d has a variance that is lower than that of
periodic-probing [12]. Convexity of r(τ) in real network is
evidenced by the network measurement [12] and if r(τ) is
convex on the interval [0,∞) and the average of the inter-
probe time is d, the following inequality can be proven by
using Jensen’s inequality [23].

∫ ∞
−∞

r(τ) fk(τ)dτ ≥ r

(∫ ∞
−∞

t fk(t)dt

)

= r(kd)

=

∫ ∞
−∞

r(τ)δ(τ − kd)dτ, (3)

where δ(·) denote Dirac δ function, k is a integer, and the
first equality follows from the average inter-probe time d
of probing. Therefore, fi− j(τ) = δ(τ − (i − j)d) mini-
mizes (2), and it corresponds to periodic-probing. Esti-
mator variance is associated with accuracy, lower is bet-
ter, so periodic-probing is the best probing process if we
focus only on variance. On the other hand, periodic-probing
does not satisfy the assumptions of (1) due to non-mixing,
so periodic-probing is not necessarily the best. This is be-
cause the phase-lock phenomenon may occur and the esti-
mator may converge on a false value when the cycle of the
ground truth process is synchronized with that of the prob-
ing process. For instance, if we inject the probe packets
at time {0, d, 2d, . . . } by periodic-probing with inter-probe
time d to measure a process X(t) = sin(2π(t − S )/d) where
S denotes random variable that follows a uniform distri-
bution U(0, d), the observed values take the same value
X(0) = X(d) = X(2d) = . . . , and the estimator P̂ does not
converge on E[X(0)] = 0. Namely, periodic-probing can be-
come biased. Therefore, we cannot conclude that periodic-
probing is always the optimal probing process.

To tune the tradeoff between PASTA-based probing
and periodic-probing (which has bias but superior variance),
Baccelli et al. proposed a probing process whose inter-probe
time follows a parameterized Gamma distribution [12]. The
pdf that is used as the interval between probe packets is
given by

g(x) =
xβ−1

Γ(β)

(
β

d

)β
e−xβ/d (x > 0), (4)

where g(x) is the Gamma distribution whose shape and scale
parameters are β and d/β, respectively. d (> 0) denotes the
mean, and β (> 0) is the parameter. When β = 1, g(x) re-
duces to the exponential distribution with mean d. When
β→ ∞, the probing process reduces to periodic-probing be-
cause g(x) converges on δ(x − d). If ACF of X(t) is convex,
it has been proven that the variance of estimator P̂ sampled
by intervals that follow (4) monotonically decreases as β in-
creases. We can achieve small variance (it approaches the
variance of periodic-probing) by setting β to a large value
since (4) converges on periodic-probing towards the limit
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β → ∞. The problem of bias due to the phase-lock phe-
nomenon can be avoided if we tune β to a limited value
(the probing process that has intervals set by (4) is mix-
ing). We can resolve the tradeoff between PASTA-based
probing and periodic-probing if we give β an appropriate
value. This Gamma-probing provides multiple selections ly-
ing between traditional PASTA-based probing and periodic-
probing through parameter β, and it is a great advance in
network measurement techniques.

However, since Ref. [12] did not indicate how to decide
upon the optimal β, it has remained a problem with no so-
lution. To solve this problem, we introduce in this paper a
method that can specify the optimal probing policy.

3. Evaluation of Phase-Lock Phenomenon

This study examines the phase-lock phenomenon in detail
because our goal, specifying the optimal probing process,
demands avoidance of this phenomenon. Reference [12]
did not mention this cause of the phase-lock phenomenon
in detail because it was not main topic. Accordingly, this
section investigates the cause and effect of the phase-lock
phenomenon and introduces an evaluation function that can
assess this phenomenon appropriately.

The convex ACF r(τ) of the ground truth process
X(t) means X(t) has no special periodicity (see Fig. 1).
The phase-lock phenomenon occurs when the cycle of the
ground truth process synchronizes to that of the probing
process. Hence, the phase-lock phenomenon will not oc-
cur if the ACF is strictly convex. (3) showed that variance is
minimized with periodic probing, and it means that it will
not realize large variance (inaccuracy) due to phase-lock
phenomenon, under the strictly convex ACF. However, the
experiments in Ref. [12] demonstrated that there are mul-
tiple instances in which the accuracy of the estimator of
periodic-probing was worse than that of other probing pro-
cesses (periodic-probing is not always inaccurate).

We consider that the phase-lock phenomenon is caused
by accidental periodicity that is realized by using finite mea-
surement periods. Even if the ground truth process has no
special periodicity (in terms of long-time average), acciden-
tal periodicity is possible. Thus, there is a possibility that a
specific frequency component will be present by chance if
the measurement period is limited. Even if ACF in terms of
ensemble mean (namely long-time average)

Fig. 1 Convexity of ACF and special periodicity of the ground truth
process.

r(τ) = E[X(t)X(t + τ)] − {E[X(t)]}2

is strictly convex, ACF in terms of a time average on finite
period (0, l]

R(τ) =
1

l − τ
∫ l−τ

0
X(t)X(t + τ)dt

− 1
(l − τ)2

∫ l−τ

0
X(t)dt

∫ l−τ

0
X(t + τ)dt (5)

is not necessarily convex. Note that R(τ) is a stochastic pro-
cess that depends on X(t). If we measure the X(t) on lim-
ited measurement period (0, l], we should consider (5) that
is generated by X(t) on (0, l]. In Fig. 2, we display the ACF
of M/M/1 queue length. The arrival rate and the service
rate are 0.75 and 1.0, respectively. The line of time aver-
age in Fig. 2 represents the time average on a finite period
(0, 10000] for a single sample path generated by simulation.
According to the figure, we can confirm that the ACF in
terms of a time average is not a convex function though the
ACF exhibits, in terms of ensemble mean, convexity. In a
sample path we show in the figure, we can find accidental
periodicity at τ � 250, and the estimator is inaccurate due
to the phase-lock phenomenon if we set a probe interval to
250.

Unpredictability is what distinguishes accidental peri-
odicity from special periodicity in terms of long-time aver-
age. Special periodicity continues into the future constantly
since it reflects the structure of the target, and hence we can
predict the cycle using knowledge of the past ground truth
process. On the other hand, we cannot predict accidental
periodicity, no matter what knowledge of past ground truth
process we may use. Because the unexpected behavior that
is the difference between the behavior of the real sample
path and the expected behavior (that is expressed by ACF)
yields accidental periodicity. If we can obtain knowledge
of past ground truth process before a measurement, we can
avoid synchronization with special periodicity by changing
the cycle of the probing process. However, accidental pe-
riodicity cannot be predicted and can be generated on any
cycle, and hence we cannot avoid synchronization with acci-
dental periodicity by changing the cycle of the probing pro-
cess.

Therefore, accuracy will fall if a sample path of the
ground truth process contains a lot of frequency compo-
nents to which the probing process can become synchro-

Fig. 2 ACF in terms of time average and ensemble mean.
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nized. Conversely, if it contains few such frequency compo-
nent, the accuracy will be remarkably high. The accuracy of
periodic-probing may become extremely bad for the specific
sample path though it is reasonable on average.

Accordingly, to assess the phase-lock phenomenon ap-
propriately we must consider the accuracy that correspond-
ing to the target sample path. We assume the metric that we

want to measure is the time average Xl =
∫ l

0
X(t)/l dt on the

measurement period (0, l] and E[P̂|X(t)] = Xl holds (namely
we can achieve bias-free measurement and the assumption
suits our probing method which we will mention in Sect. 4).
Note that our target Xl is not ensemble mean E[X(0)] but
empirical average, and it is random variables. By using a
conditional variance, we can express the accuracy for the
target sample path as

Var[P̂|X(t)]. (6)

Note that the conditional variance (6) is random variable
that depends on stochastic process X(t). We discriminate
between accuracy regarding a time average and accuracy re-
garding an ensemble mean. The former is expressed by (6),
and the latter is expressed by normal variance Var[P̂]. Ref-
erence [12] proved that periodic-probing gives Var[P̂] the
minimal value (we introduced this in Sect. 2), and we can
understand that Var[P̂] corresponds to the expectation of the
(6) according to the following equation:

E[Var[P̂|X(t)]] = Var[P̂] − Var[Xl]. (7)

Note that the second term on the right-hand side of (7)
does not depend on the probing policy. Therefore, by using
(7), we can assess the average accuracy (in which periodic-
probing is superior). On the other hand, the effect of the
phase-lock phenomenon is that (6) is varied with the in-
tensity of the frequency component (which is synchronized
with the probing process). The effect of the phase-lock phe-
nomenon can be assessed by the following:

Var[Var[P̂|X(t)]]. (8)

This paper looks for a probing process that can avoid the
extreme drops in accuracy created by the phase-lock phe-
nomenon. In addition, the probing process should also
achieve a small (7) (In other words, it should also be ac-
curate in terms of average accuracy).

To find a probing policy that satisfies the above two re-
quirements (which are assessed by (7) and (8), respectively),
we introduce the following evaluation function:

{
E[Var[P̂|X(t)]]

}2
+ Var[Var[P̂|X(t)]]

= E
[{

Var[P̂|X(t)]
}2]
. (9)

Our evaluation function is defined by the square of l2-norm
of (8), and it is equivalent to Mean Square Error (MSE) with
estimated parameter θ = 0. We define the probing process
that minimizes evaluation function (9) as the optimal prob-
ing process, and we investigate the optimal probing process

as determined by the property of the target network.

4. Probing Method with Fluctuations

In this section, to analyse the optimal probing policy, we will
introduce the probing process with fluctuated intervals that
avoids the phase-lock phenomenon. As we mentioned in
Sect. 3, the cause of the phase-lock phenomenon is acciden-
tal periodicity. We cannot avoid the phase-lock phenomenon
by changing the cycle of the probing process (i.e. the aver-
age probe interval), since accidental periodicity can be gen-
erated on any cycle. Therefore, to avoid the phase-lock phe-
nomenon, we use a random variable to fluctuate the probe
intervals. In other words, we force the probing process to
exhibit multiple cycles (i.e. variable intervals). Actually, the
Gamma-probing proposed by Baccelli et al. in Ref. [12] is
one approach to adding fluctuations. The method we in-
troduce in this section takes three parameters into consider-
ation: measurement period, number of probe packets, and
fluctuation magnitude. It is expected that measurement pe-
riod has a critical affect on the intensity of accidental peri-
odicity. In terms of avoiding the phase-lock phenomenon,
there is no essential difference between our approach and
Gamma-probing, but our approach simplifies the analysis of
the relationship between the evaluation function and the pa-
rameters of the probing policy.

We add fluctuations that obey a normal distribution to
the timing of probe packet arrivals, while specifying the
measurement period. We assume that the interval (0, l] is
the measurement period and m is the number of probe pack-
ets sent in the measurement period. Our probing method
gives the point process of probe packet arrivals {Ti} (i =
1, 2, . . . ,m) as follows.

Ti = S +Gi − l
⌊S +Gi

l

⌋
, (10)

where S and Gi denote the random variables that follow
a uniform distribution U(0, l/m) and a normal distribution
N((i − 1)l/m, σ2), respectively, �·	 denotes a floor func-
tion and σ denotes the magnitude parameter of the fluctu-
ations. To prevent {Ti} from taking a value outside the mea-
surement period (0, l], we add the third term. The second
term contributes to the fluctuation of probe packet interval.
The first term determines a phase, and does not affect the
probe packet interval (note that the first term does not de-
pend on i). Note that the order of packet injection could
be changed when the point process of probe packet arrivals
is given by (10). The packets are injected in random or-
der if the fluctuation magnitude is sufficiently large. It is
easy to prove that the probability that at least one packet
of m probe packets injects in [t, t + Δt) is (mΔt)/l for any
t (0 ≤ t < l) since all of the phases are mixed uniformly
by the random variable S if we inject the probe packets at
{Ti} (i = 1, 2, . . . ,m) given by (10) (see Appendix). There-
fore, estimator P̂ =

∑m
i=1 X(Ti)/m is an unbiased estimator

for our target Xl.
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Our probing process provides multiple selections ly-
ing between traditional PASTA-based probing and periodic-
probing as well as Gamma-probing. If σ = 0 (namely there
is no fluctuation), {Ti} corresponds to periodic-probing. On
the other hand, if σ → ∞, Ti follows a uniform distribution
U(0, l). Therefore, intervals between Ti follow an exponen-
tial distribution for sufficiently large l.

5. Fluctuation Magnitude and Accuracy

In this section, we will clarify the relationship between fluc-
tuation magnitude imposed on probe timing and the evalu-
ation function (9), and we will detail a method that speci-
fies the optimal fluctuation magnitude, theoretically. As we
mentioned in Sect. 3, periodic-probing is the optimal prob-
ing process if we consider only average accuracy. It is im-
portant to specify the minimal fluctuation magnitude that
can avoid the phase-lock phenomenon, because large fluc-
tuations cause the probing process to deviate too far from
periodic-probing.

Our evaluation function (9) is composed of the average
and variance of (6). Therefore, we first address the stochas-
tic behavior of (6). We define X̃l(t) = X(t − l�t/l	) which
depends on stochastic process X(t) in measurement period
(0, l]. In addition, we define T̃i = S +Gi, which is composed
of a simple uniform and normal random variable. Since X(t)
observed at the timing of {Ti} is equal to X̃l(t) observed at the
timing of {T̃i}, the following equation holds:

P̂ =
1
m

m∑
i=1

X(Ti) =
1
m

m∑
i=1

X̃l(T̃i).

Therefore, by using ACF R̃l(τ) =
∫ l

0
X̃l(t)X̃l(t + τ)/l dt −

{∫ l

0
X̃l(t)/l dt}2 in terms of time average, (6) can be expressed

as follows (as well as (2)).

Var[P̂|X(t)] =
1

m2
Var

⎡⎢⎢⎢⎢⎢⎣
m∑

i=1

X̃l(T̃i)
∣∣∣∣∣ X(t)

⎤⎥⎥⎥⎥⎥⎦
=

1
m2

m∑
i=1

m∑
j=1

∫ ∞
−∞

R̃l(τ) fi− j(τ)dτ,

where fi− j is the pdf of Ti − T j, and it obeys the normal
distribution N((i− j)l/m, 2σ2) when i � j. Note that R̃l(τ) is
a stochastic process that depends on X(t).

Furthermore, when we expand R̃l(τ) in Fourier series,
we find that

Var[P̂|X(t)]

=
1

m2

∞∑
n=1

Kn

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑

i=1

m∑
j=1

∫ ∞
−∞

cos

(
2πn

l
τ

)
fi− j(τ)dτ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
(11)

Kn =
2
l

∫ l

0
cos

(
2πn

l
τ

)
R̃l(τ)dτ,

where the second equality follows from the periodic and

even function R̃l(τ). Note that {Kn} (n = 1, 2, . . . ) are
random variables that depend on X(t); they represent the
intensity of each frequency component of X(t). Since
T̃i − T̃ j = Gi − G j (i � j) follows a normal distribution,
N((i − j)l/m, 2σ2), the following equation holds:

∫ ∞
−∞

cos

(
2πn

l
τ

)
fk(τ)dτ =

∫ ∞
−∞

cos

(
2πn

l
τ

)
fm−k(τ)dτ.

Therefore, we obtain

m∑
i=1

m∑
j=1

∫ ∞
−∞

cos

(
2πn

l
τ

)
fi− j(τ)dτ

= m
m−1∑
i=0

∫ ∞
−∞

cos

(
2πn

l
τ

)
fi(τ)dτ

= m + m
∫ ∞
−∞

cos

(
2πn

l
τ

) m−1∑
i=1

1

2σ
√
π

e−
(τ−il/m)2

4σ2 dτ

= m − m
∫ ∞
−∞

cos

(
2πn

l
τ

)
1

2σ
√
π

e−
τ2

4σ2 dτ

+ m
∫ ∞
−∞

cos

(
2πn

l
τ

) m−1∑
i=0

1

2σ
√
π

e−
(τ−il/m)2

4σ2 dτ

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
m + (m2 − m)

∫ ∞
0

cos
(

2πn
l τ
)

1
σ
√
π
e−

τ2

4σ2 dτ, n = m j

( j = 1, 2, . . . )

m − m
∫ ∞

0
cos
(

2πn
l τ
)

1
σ
√
π
e−

τ2

4σ2 dτ, otherwise

=

⎧⎪⎪⎨⎪⎪⎩
m + (m2 − m)e−(

2πn
l )2
σ2
, n=m j ( j=1, 2, . . . )

m−m e−(
2πn

l )2
σ2
, otherwise

, (12)

where the last equality follows from the following integral
(see Ref. [24]).

∫ ∞
0

e−ax2
cos bx dx =

1
2

√
π

a
e−

b2

4a ,

where a and b denote an arbitrary positive real number and
an arbitrary real number, respectively.

Substituting (12) for (11), the accuracy achieved for
target sample path Var[P̂|X(t)] is expressed as follows us-
ing the intensity of each frequency component {Kn} (n =
1, 2, . . . ).

Var[P̂|X(t)] =
∞∑

i=1

wiKi, (13)

wi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1+(m−1)e−(

2πi
l )2

σ2

m , i = m j ( j = 1, 2, . . . )

1−e−(
2πi

l )2
σ2

m , otherwise
.

Note that K0 = 0 because
∫ l

0
R̃l(τ)dτ = 0.

To clarify the average and standard deviation of
Var[P̂|X(t)], we must investigate the stochastic behavior of
{Kn} (n = 1, 2, . . . ). Since Fourier transformation of autocor-

relation function R̃l(t) + X
2
l of the stochastic process yields
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a power spectrum (Wiener-Khintchin theorem [25]), the fol-
lowing equation holds for any sample path x(t) of X(t),

F
[
r̃l(t) + x2

l

]
= |F [x̃l(t)]|2 ,

where r̃l(t) + x2
l and x̃l(t) represent the sample paths of

R̃l(t) + X
2
l and X̃l(t) that correspond to the sample path x(t).

Consequently, Kn relates to the Fourier coefficients of X(t)
as follows.

Kn =
Cn

2 + S n
2

2
, (14)

where

Cn =
2
l

∫ l

0
cos

(
2πnt

l

)
X(t)dt,

S n =
2
l

∫ l

0
sin

(
2πnt

l

)
X(t)dt.

Note that Fourier coefficients Cn and S n are random vari-
ables because they depend on X(t).

Hence, by using (13) and (14), we can express the eval-
uation function (9) by the covariance of Ci or S i. (7) which
composes our evaluation function is given as follows.

E
[
Var[P̂|X(t)]

]
=

∞∑
i=1

wiE

[
Ci

2 + S i
2

2

]

=
1
2

∞∑
i=1

wi {Cov(Ci,Ci) + Cov(S i, S i)} .
(15)

Similarly, the other component (8) forming the evaluation
function is as follows.

Var
[
Var[P̂|X(t)]

]

=

∞∑
i=1

∞∑
j=1

wiw jCov

(
Ci

2 + S i
2

2
,

C j
2 + S j

2

2

)

=
1
4

∞∑
i=1

∞∑
j=1

wiw j

{
Cov
(
Ci

2,C j
2
)

+ 2 Cov
(
Ci

2, S j
2
)
+ Cov

(
S i

2, S j
2
) }
.

We assume that Ci and S i follow normal distributions
since it is difficult to treat covariance between the squares
of random variables. We can provide the rationale of the
approximation that Ci and S i follow normal distributions.
By separating the integrals, we get the following equations:

Ci =
2
l

i−1∑
k=0

∫ l(k+1)/i

lk/i
cos

(
2πit

l

)
X(t)dt, (16)

S i =
2
l

i−1∑
k=0

∫ l(k+1)/i

lk/i
sin

(
2πit

l

)
X(t)dt. (17)

(16) and (17) are the summation of the i random variables

that obey the same distribution. Note that they are not in-
dependent of each other. Suppose that random variables
Xk (k = 0, 1, . . . , n) are stationary and α-mixing with O(k−5),
and these expectation and the 12th moments are 0 and fi-
nite, respectively. The central limit theorem for depen-
dent cases guarantees that the distribution of the summation
Xn

sum =
∑n

k=1 Xk can approximate normal distribution for
sufficiently large n [26]. The condition that is required for
Xk is a sufficient condition, and the actual restriction is more
relaxed (see Ref. [26] for details). The variance is given by

Var[Xn
sum] = n

⎛⎜⎜⎜⎜⎜⎜⎝E[X1
2] + 2

n−1∑
l=1

E[X1X1+l]

⎞⎟⎟⎟⎟⎟⎟⎠ .
Therefore, if we assume

Xk =

∫ l(k+1)/i

lk/i
cos

(
2πit

l

)
X(t)dt,

we can guarantee that the (16) follows a normal distribution
for sufficiently large i (we can also guarantee the (17) fol-
lows a normal distribution similarly). Sufficient conditions
for target process X(t) are as follows: (1) the target process
X(t) is stationary process; (2) Variance of X(t) is finit; (3) the
absolute value of ACF of X(t) is O(t−5). Though we can not
apply the above approximation for small i, we can consider
that the (16) and (17) are summations of non-identically dis-
tributed h random variables with mean 0 by separating the
integrals as follows.

Ci =
2
l

h−1∑
k=0

∫ l(k+1)/h

lk/h
cos

(
2πit

l

)
X(t)dt,

S i =
2
l

h−1∑
k=0

∫ l(k+1)/h

lk/h
sin

(
2πit

l

)
X(t)dt.

The central limit theorem for non-identically distributed and
independent random variables guarantees that the summa-
tion of random variables Xk follows a normal distribution
when the following equation hold for some δ > 0 [26].

lim
n→∞

∑n
k=0 E[|Xk − μk |2+δ]√∑n

k=0 νk
2+δ

,

where μk and νk represent mean and variance of Xk. The
above central limit theorems for dependent (but identi-
cally distributed ) random variables and non-identically dis-
tributed (but independent) random variables motivate us to
consider that (16) and (17) follow a normal distribution even
though the explicit conditions to hold the central limit the-
orem for dependent and non-identically distributed random
variables are not provided. Moreover, in Sect. 6, we will
supplement the rationale of the assumption through the sim-
ulation result.

By using the approximation, we can derive Var[Var
[ ˆP|X(t)]] as follows.

Var
[
Var[P̂|X(t)]

]
=

1
4

∞∑
i=1

∞∑
j=1

wiw j

{
Cov
(
Ci

2,C j
2
)
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+ 2 Cov
(
Ci

2, S j
2
)
+ Cov

(
S i

2, S j
2
) }

=
1
4

∞∑
i=1

∞∑
j=1

wiw j

{
2
{
Cov
(
Ci,C j

)}2

+ 4
{
Cov
(
Ci, S j

)}2
+ 2
{
Cov
(
S i, S j

)}2 }
,

where the second equality follows from the property of the
moment of bivariate normal distributions.

Finally, if we can relate Cov(Ci, S j), Cov(Ci,C j) and
Cov(S i, S j) to r(τ), our evaluation function can evaluate any
probing method. Calculating Cov(Ci, S j), we have

Cov(Ci, S j)

=
4
l2

∫ l

0

∫ l

0
cos

(
2πi

l
t

)
sin

(
2π j

l
s

)
E [X(t)X(s)] dsdt

− E[Ci]E[S j]

=
4
l2

∫ l

0

∫ l

0
cos

(
2πi

l
t

)
sin

(
2π j

l
s

)
r(s − t)dsdt

=
4
l2

∫ l

0

∫ l−t

−t
cos

(
2πi

l
t

)
sin

(
2π j

l
(τ − t)

)
r(τ)dτdt

=
2
l2

∫ l

0

∫ −τ
−l

{
sin

(
2π( j + i)

l
t +

2π j
l
τ

)

+ sin

(
2π( j − i)

l
t +

2π j
l
τ

) }
dt r(τ)dτ

+
2
l2

∫ 0

−l

∫ l

−τ

{
sin

(
2π( j + i)

l
t +

2π j
l
τ

)

+ sin

(
2π( j − i)

l
t +

2π j
l
τ

) }
dt r(τ)dτ.

Moreover, by creating two cases i = j and i � j and inte-
grating the result, we get Cov(Ci, S j) = 0. Similarly, we can
calculate Cov(Ci,C j) and Cov(S i, S j) as follows.

Cov(Ci,C j) =

⎧⎪⎪⎨⎪⎪⎩
− 2

ilπ rS ,i +
4
l rC,i, (i = j)

4
lπ( j2−i2)

(
irS ,i − jrS , j

)
, (i � j)

,

Cov(S i, S j) =

⎧⎪⎪⎨⎪⎪⎩
2

ilπ rS ,i +
4
l rC,i, (i = j)

4
lπ( j2−i2)

(
jrS ,i − irS , j

)
, (i � j)

,

rS ,i =

∫ l

0
sin

(
2πi

l
τ

)
r(τ)dτ,

rC,i =

∫ l

0

(
1 − τ

l

)
cos

(
2πi

l
τ

)
r(τ)dτ.

Substituting them into (15), we have

E
[
Var[P̂|X(t)]

]
=

∞∑
i=1

4
l
wirC,i,

Var
[
Var[P̂|X(t)]

]
(18)

=

∞∑
i=1

{
4
l
wirC,i

}2

+

∞∑
i=1

{
2

liπ
wirS ,i

}2

+
∑
i� j

16wiw j

(i2 + j2)
{
rS ,i

2 + rS , j
2
}
− 4i jrS ,irS , j

l2π2(i2 − j2)2
. (19)

However, the second and the third terms on the right-
hand side of (18) are trivial compared with the first term if
we give actual parameters to r(τ), l and m. Hence, (18) is
approximated as

Var
[
Var[P̂|X(t)]

]
�
∞∑

i=1

{
4
l
wirC,i

}2

.

In Sect. 6, we will confirm the validity of the approximation.
Thus, the evaluation function e(σ) that corresponds to

(9) is given by the following:

e(σ) =

⎧⎪⎪⎨⎪⎪⎩
∞∑

i=1

4
l
wirC,i

⎫⎪⎪⎬⎪⎪⎭
2

+

∞∑
i=1

{
4
l
wirC,i

}2

. (20)

We can plot evaluation function e(σ) if we specify the fol-
lowing: measurement period l, number of probe packets m,
the ACF r(τ) of X(t), and fluctuation magnitude σ (which
is added to the timing of probe packets). This means that
we can obtain the optimal fluctuation magnitude to suit the
properties of the target network.

6. Approximation Validity and an Evaluation Exam-
ples

In this section, we confirm the validity of our approxima-
tions through simulation, and we will show an evaluation
example. We should check the approximations that were
used to derive (20). Moreover, at the end of this section, we
show some examples of our evaluation function for the case
of M/M/1 queue measurement.

We use the queue length (i.e. the number in the system)
of M/M/1 as X(t). The behavior of the M/M/1 queue is very
well studied. The mean and variance of the queue length of
an M/M/1 system are

E[X(t)] =
ρ

1 − ρ ,

Var[X(t)] =
ρ

(1 − ρ)2
. (21)

The ACF of the queue length of an M/M/1 system is as fol-
lows [27].

r(τ) =
(μ − λ)3

π

∫ 2π

0
sin2 θ

e−w|τ|

w3
dθ,

where

w = λ + μ − 2
√
λμ cos θ.

Furthermore, if μ = 1, we can approximate the normalized
ACF by the following simple form (see (3.7) in Ref. [28]).

r′(τ) � 1
2

{
e−A|τ| + e−B|τ|} ,

where

A =
(1 − λ)2

1 + λ +
√
λ
, B =

(1 − λ)2

1 + λ − √λ .
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Fig. 3 Normalized ACFs of M/M/1 queue process for various arrival
rates.

Therefore, by using (21), we can get the ACF of the M/M/1
queue as follows.

r(τ) � ρ

(1 − ρ)2
r′(τ). (22)

We show the normalized ACF for various arrival rates λ in
Fig. 3. Generally, the most important parameter that charac-
terizes each ACF is the rate that r(t) approaches to 0.

On active measurement of delay, the probe packets ob-
tain information of the waiting time, not the number in the
system. Compared to the queue length case, the correla-
tion structure of the waiting time on the M/M/1 system is
extremely complicated, and does not provide any additional
insight for our study. Thus we choose the queue length pro-
cess as the target in our verification, though it does not cor-
respond to actual measurements completely.

We discuss the validity of our approximations by using
the ACFs that are obtained from a M/M/1 queue length. To
derive (20), we used two approximations. One is a Fourier
coefficient, which obeys a normal distribution, and the other
is negligible terms on the right-hand side of (18).

First, we confirm that Fourier coefficients Cn and S n

obey normal distributions. We already showed the ana-
lytical rationale by using the extended central limit theo-
rem in Sect. 5. We executed an M/M/1 simulation 3000
times and calculated the CDF of the C1 through the sim-
ulation. The CDF calculated through the simulation and
the CDF of a normal distribution are displayed in Fig. 4.
The parameters we used in the simulations are as follows.
The arrival rate λ is 0.75, the service rate μ is 1.0, and
the simulation time is 50000. According to the figure, we
confirm that these distributions are corresponding to each
other. We gained similar results for Cn (n = 1, 2, . . . ). In
Sect. 5, we used the property of moment of bivariate nor-
mal distributions with the approximation, i.e. we consid-
ered Cov(Ci

2,C j
2) = 2{Cov(Ci,C j)}2 and the other ver-

sion of the combination of Ci and S i. To verify the ap-
proximation accuracy, we executed an M/M/1 simulation
3000 times, and computed Var[Cn

2] and 2{Var[Cn]}2 di-
rectly. Note that Var[Cn

2] and 2{Var[Cn]}2 are special cases
of Cov(Ci

2,C j
2) and 2{Cov(Ci,C j)}2, respectively. Fig-

ure 5 displays Var[Cn
2] and 2{Var[Cn]}2 through the sim-

ulations. From Fig. 5, we can confirm that Var
[
Cn

2
]

is

Fig. 4 CDF of the C1 calculated through the simulation.

Fig. 5 Comparison of Var[Cn
2] and 2{Var[Cn]}2.

Fig. 6 Comparison of first term and other terms on the right-hand side of
(18).

close to 2{Var[Cn]}2, for every n. We plotted Var[S n
2] and

2{Var[S n]}2, and gained similar results.
Furthermore, we show that the second and the third

terms on the right-hand side of (18) are negligible. By us-
ing (22), we computed the first term and other terms on the
right-hand side of (18) separately. Figure 6 represents the
first term and other terms. The parameters we used are as
follows. The arrival rate λ is 0.75, the service rate μ is 1.0,
the measurement period l is 50000, and the probing rate m/l
is 0.01. Note that the horizontal axis represents the fluctu-
ation magnitude σ. According to the figure, it is clear that
the effects of the second and the third term are much less
that those of the first term.

Next, we show the complementary cumulative distribu-
tion function (CDF) of the accuracy that is expressed by (6)
in the case of the M/M/1 queue measurement in Fig. 7. The
parameters we used are as follows. The arrival rate λ is 0.75,
the service rate μ is 1.0, the measurement period l is 1000,
and the probing rate m/l is 0.01. We plotted for three differ-
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Fig. 7 Distribution of (6) in the case of the M/M/1 queue measurement.

Fig. 8 Comparison of first term and other terms on the right-hand side of
(20).

ent probing policies: periodic-probing, our probing method
with σ = 20 and PASTA-based probing. According to the
figure, we can find that the variance Var[P̂|X(t)] in the case
of PASTA-besed probing is so large (i.e. inaccurate), and
larger variance in the case of periodic-probing occurs more
frequently compared with that in the case of σ = 20 (but
the mean of the variance in the case of periodic-probing is
smaller than that of σ = 20). The result is consistent with
our discussion in Sect. 3.

Finally, we show some examples of our evaluation
function by using the ACFs that are obtained from a M/M/1
queue length. Please note that, in the rest of this section, we
will not execute any simulation. We use the ACF that is de-
rived from a M/M/1 queue process, but our result does not
depend on any properties of M/M/1 except the ACF. There-
fore, the result can be generalized to the processes that have
similar ACF structure. These examples can provide us some
insights for tuning the optimal fluctuation magnitude in ac-
tual measurements.

In Fig. 8, we display the evaluation function (20) with
parameters of λ = 0.75, μ = 1.0, l = 50000, and m = 500.
We also plotted the first term of (20) (shown in the figure
as crosses) in Fig. 8. Note that the horizontal axis represents
the fluctuation magnitude σ. The first term of (20) expresses
the square of the expectation of Var[P|X(t)] (it means the ex-
pectation of accuracy). According to Fig. 8, the first term is
the smallest when σ = 0 (i.e. the case of periodic-probing).
On the other hand, our evaluation function is not the small-
est because it assesses the phase-lock phenomenon by the
second term. The evaluation function shows that the opti-
mal value of σ is about 20 in this case.

Fig. 9 Relationship between the optimal fluctuation magnitude and
probing rate.

Fig. 10 Relationship between the optimal fluctuation magnitude and
measurement period.

In addition, we verified the dependence of the evalu-
ation function on each measurement parameter. First, we
confirmed the relationship between the evaluation function
and the probing rate m/l. We plot the evaluation function
of each probing rate while changing m in Fig. 9. Parameters
except m are as follows. λ = 0.75, μ = 1, and l = 50000.
We can confirm that the optimal fluctuation magnitude de-
creases as the probing rate increases. Since the average
probe packet intervals decrease with increase of the prob-
ing rate, the timing of probe packet injection is randomized
with slight fluctuations when a probing rate is high. Adding
fluctuations with magnitude σ to the probe packets with a
rate m/l has a randomized effect equivalent to adding fluc-
tuations with magnitude σ/2 to the probe packets with a
rate (2m)/l. Therefore, we can avoid the phase-lock phe-
nomenon by adding slight fluctuations when a probing rate
is high. Second, we confirmed the relation between the
evaluation function and measurement period l with fixed
probing rate. Figure 10 plots the evaluation function of each
measurement period. Parameters except l are as follows.
λ = 0.75, μ = 1, and the probing rate is 0.01. We can
confirm that the optimal fluctuation magnitude holds steady
even as the measurement period changes (if probing rate is
fixed).

We show the dependence of the optimal fluctuation
magnitude on traffic intensity to help network researchers
and practitioners in designing experiments. As we men-
tioned above, the measurement period has no critical ef-
fect on the optimal fluctuation magnitude. Therefore, we
can cover all cases if we consider the arrival rate and the
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Fig. 11 Ratio of the optimal fluctuation magnitude to the average probe
intervals is less than 20%.

probing rate. In Fig. 11, we display the ratio of the optimal
fluctuation magnitude to the average probe intervals l/m for
each arrival rate. Namely, we plot mσ∗/l where σ∗ is the
optimal fluctuation magnitude. Note that the probing rate
means the ratio of probe packet traffic to the regular traffic,
since the service rate is fixed at 1 in our example. We plot-
ted a wide variety of values of arrival rate in terms of the
speed that ACF r(τ) approaches to 0 (in Fig. 3, we showed
the ACFs that correspond to the values of arrival rate we
displayed). According to the Fig. 11, we can find that all
of points are less than 20% though ACFs r(τ) are extremely
various. Practically, it is difficult to gain the exact knowl-
edge of the ACF without a measurement. However, our
result suggests that fluctuation magnitude corresponding to
20% is enough to avoid phase-lock phenomenon for a wide
variety of ACFs.

We should take into account intrusiveness when we
choose the probing rate m/l. High probing rate leads an
accurate estimation normally though excessive injections of
probe packets lead a deterioration of accuracy. In this pa-
per, we present a method to specify the optimal fluctuation
magnitude of probe packet intervals under the non-intrusive
context (the load of the probe packets is ignored in the non-
intrusive context). In real measurement, we must design
experiments in which impact of the probe packet load is
insignificant. Reference [10] clarified the relationship be-
tween an asymptotic variance and ACF of target process,
and discussed the optimal probing rate that keeps the accu-
racy deterioration insignificant. According to the results in
Ref. [10], in M/M/1 model with the arrival rate λ and the ser-
vice rate μ, an asymptotic variance s2(λ, μ, p) is given by the
following if we inject probe packet with probing rate pλ.

s2(λ, μ, p) � ρ2

(1 − ρ)2
+ p

4ρ3

(1 − ρ)4
, (23)

where ρ = (1 + p)λ/μ. The optimal probing rate is pλ that
minimizes (23). p means the ratio of the probe stream to all
streams, and the p that gives optimal probing rate provides
insight to choose probing rate m/l.

7. Generality of the Result

We discuss generality of the result of M/M/1 model pre-
sented in Sect. 6. In Sect. 6, we presented the evaluation

examples based on the ACF of M/M/1 queue length pro-
cess, and obtained some insights regarding the relation-
ship among ACF, measurement period, the number of probe
packets, and the optimal fluctuation magnitude. It is not the
contention of this paper that the M/M/1 model is a good
model for the modern networks. Of course, M/M/1 model
is fundamental but unreal model and the modern networks
are not well-modeled as it. However, the optimal fluctuation
magnitude that specified by our method does not depend on
any properties of M/M/1 except the ACF. Therefore, we ob-
tain same results if the shape of ACF of process that we want
to measure is similar to that of M/M/1 queue length process
even if M/M/1 does not exactly model the inside of the tar-
get network (e.g. behavior of packet, network topology, and
queueing, etc.).

The ACFs of processes that we are targeting are mono-
tonically decreasing and convex functions on the interval
[0,∞) though our method that presented in Sect. 5 can ap-
ply to a process with any ACF. Monotonically decreasing
and convex ACFs of delay/loss processes are well-motivated
by analysis of real Internet traffic [12]. The most important
parameter to characterize these ACFs is decreasing rate for
τ→ ∞.

ACF (22) of M/M/1 queue length process is simple
function that satisfies above two conditions, and it can have
various decay rate by changing parameter ρ as shown in
Fig. 3. We can consider that the family of ACFs (22) that
are based on M/M/1 queue length process represents various
ACFs that we are targeting since target ACFs are character-
ized by decay rate.

We can expect that the insights that we obtained in
Sect. 6 can be utilized when we design experiments for mea-
surements of delay/loss processes whose ACF is monotoni-
cally decreasing and convex. In Sect. 6, we gained two main
insights: (1) the optimal fluctuation magnitude has robust-
ness to a change of measurement period l; (2) the fluctuation
magnitude of 20% of the average probe interval is enough to
avoid phase-lock phenomenon for various probing rate and
ACFs that have a wide variety of decay rate. As we men-
tioned above, it is difficult to gain the exact knowledge of
the ACF. However, these insights can apply to various target
processes that have similar ACF structure even if we cannot
gain the knowledge of the ACF. Therefore, we can design a
measurement on the safe side by setting the fluctuation mag-
nitude to 20% of probe intervals (needless to say, we can de-
sign experiments optimally if we can gain the knowledge of
the ACF). In addition to above insights, we understand that
the results of validation of approximation that the second
and the third terms on the right-hand side of (18) are neg-
ligible can also apply to various target processes that have
similar ACF structure.

8. Conclusion

In this paper, we analysed the optimal fluctuation magnitude
that should be added to the timing of probe packets. For the
analysis, we introduced a probing policy that randomly per-
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turbs the timing of probe packets by using a normal distribu-
tion. Moreover, we defined an evaluation function that can
well assess the phase-lock phenomenon, and we provided a
method that can specify the optimal fluctuation magnitude
by using the ACF of the target process that we want to mea-
sure.

We confirmed the validity of our method by applying
it to M/M/1 queue measurement. Furthermore, we showed
that the probing rate greatly affects the optimal fluctuation
magnitude. The measurement period is not a critical param-
eter. Through our evaluation examples, we were able to find
that a fluctuation magnitude of 20% of the average probe in-
terval is enough to avoid the phase-lock phenomenon for a
wide variety of ACFs.

In the future, we will validate the method in detail in-
cluding verification on an actual network. To implement our
probing policy as an actual measurement method, we need
to know the ACF of the target process (delay or loss process
etc.) because it is needed to specify the optimal probing pol-
icy. Thus we will determine how to estimate the properties
of the target network from past measurement data.
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Appendix

We prove that the probability that at least one packet of m
probe packets injects in [t, t + Δt) is (mΔt)/l for any t (0 ≤
t < l) when we inject the probe packets at {Ti} given by (10).

Proof. The probability that ith packet is injected in infinites-
imal difference [t, t + Δt) (0 ≤ t < l) under the condition
S = s is

Δt ·
∞∑

k=−∞
pnorm

(
t + kl − l(i − 1)

m
− s

)
,

where pnorm(t) denotes a pdf of normal distribution with av-
erage 0 and standard deviation σ. Then, the probability that
one of packet of m probe packets is injected in [t, t + Δt)
under the condition S = s is

Δt ·
m∑

i=1

∞∑
k=−∞

pnorm

(
t + kl − l(i − 1)

m
− s

)
.
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Therefore, since S follows a uniform distribution U(0, l/m),
the probability that one of packet is injected in [t, t + Δt) is
as follow.

Δt · m
l

∫ l
m

0

m∑
i=1

∞∑
k=−∞

pnorm

(
t + kl − l(i − 1)

m
− s

)
ds

= Δt · m
l

∫ l

0

∞∑
k=−∞

pnorm

(
t + kl − l(i − 1)

m
− s

)
ds

= Δt · m
l
.
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