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Presentation Overview

€ A graph consisting of nodes and edges is an extremely versatile data
structure.

Communication networks Social networks Molecular structures
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€4 The main topic of this talk is artificial graph generation techniques.

€ Generating not present or future graph structures from a small
number of parameters or graph data.

(O node (vertex)

& Applications of graph generation
€ Simulation of communication protocols

€ Information dissemination and community prediction in social
networks

€ Code suggestion in programming
€ Development of drugs with novel molecular structures T 2
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History of Graph Generation Techniques

€ Graph generation techniques began with the ER model in 1959.
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& There are various features of graphs:
€ Average shortest path length, diameter
# Clustering coefficient, modularity

& Average degree, power-law exponent of degree distribution, edge
density

& Eigenvalues, degree centrality, betweenness centrality, PageRank

€ Common objective: How to sample graphs with desired .
features from the huge space of graphs. e 3
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Random Generation Model — WS model

€ Watts-Strogatz model is a graph generation model that reproduce
small-world properties.

€4 Small-world properties: For a number of nodes n, the average path length
L increases at most logarithmically with n.

€ Input parameters: Number of nodes n, average degree 2K, edge rewiring
probability p
1. Create n nodes.
2. Construct a ring lattice with an average degree of 2K.
3. Rewire each edge with a probability of p.
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Random Generative Model — BA model

€ Barabasi—Albert model is a graph generation model that reproduce
scale-free properties.

# Scale-free properties: The degree distribution f (k) follows f (k) < k™Y
(2<y<3).
€ Input parameters: Number of additional edges m , number of nodes n
1. Create a complete graph consisting of m nodes.

2. Add nodes with m m edges. However, the probability of an edge from the
new node is proportional to the degree of the target node it connects to.

3. Repeat Step 2 until the number of nodes reaches n.
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Deep Graph Generators — GraphGen

€ Contrary to random graph
generation, Deep Graph
Generators reproduce every
features of real graphs.

€ Generated using Long Short
Term Memory (LSTM) in deep
learning, capable of sequence
prediction.

Converting edge sequence data
using Depth-First Search (DFS).

Previous Node ID [0 1 0
Next Node ID 1 2 3

H LU

1. Converting the training
graphs into a sequence of Training data [ NN
edges' \ 4 k \ 4 )&

2. Inputting sequence data _
and training the model to LSTM predict
predict the subsequent and output
edge. the subsequent .
3. Using the trained model edge. %
recursively to generate the
sequence.

Reconstructed-dat3
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Deep Graph Generators — GraphTune

€ A generative model capable of specifying arbitrary features by
combining Variational AutoEncoder (VAE) and LSTM [1][2].

€ Learning to encode sequence data of graphs into vectors and
then decode them back into their original sequences.

€ By inputting a specified value of features as a condition vector, it
can generate graphs with specified features.

LSTM based encoder LSTM based decoder
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Objective of Graph Generation Techniques

€ Objective of Graph Generation Techniques: How to sample
graphs with desired features from the huge space of graphs.

€ WS Model: Aiming to reproduce small-world properties (average
shortest path length).

4 BA Model: Aiming to reproduce scale-free properties (power-law
exponent of degree distribution).

€ GraphGen: Aiming to reproduce the same features as training
graph data.

€ GraphTune: Aiming to tune specific features while reproducing
the other features of training graph data.

Sampling Desired features
v V geature Q: 83
eature B: O.
Hcl)J? Srsé%ah%e A feature C: 0.2
‘/. 9
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Experimental Settings for GraphTune

€ GraphTune was trained using the following dataset:

4 Subgraphs of “who-follows-whom” graph of Twitter (Twitter
dataset)

& Twitter dataset:

& Attempted to tune only the average shortest path length by
providing it as the condition vector while reproducing the other
features of the dataset graphs.

& Specified average shortest path lengths as 3.0, 4.0, and 5.0 in
three patterns.
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Graphs generated by GraphTune

€ Distribution of generated graphs when trained on the Twitter
dataset.

€ The overall distribution matches the training graph data (Real data).
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Graphs generated by GraphTune

€ The distribution of average shortest path length.

€ We can confirm that the distribution of generated graphs is
concentrated around the specified value.
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Experiments Regarding Sequence Conversion

€ Recently, we have been investigating for converting method to
sequences from graphs.

€ We investigated the impact of changing the deterministic DFS
conversion to a random walk.

Deterministic DFS 2nd_grder random walk
0 0
1 1 or or
2 3
0 1 0 lo 2. 0 |o o 1

Next Node ID [T 1 2 3 1 3 2

& 2"d-order random walk have 2 parameters p and q.
®p > g = DFS-like walk, p << q = BFS-like walk
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Graphs generated by GraphTune

€ RMSE between the feature of generated graphs and the
specified value are evaluated.

€ Generally, the randomness of training data leads to training
difficulty, but the accuracy improved with a random walk.

€4 The impact of randomness is more pronounced when the training

data size is small.
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Future Prospects — Conditional Generation

€ Graph generation techniques for reproducing training data
have matured.

€ The current focus is shifting towards the development of
conditional generation techniques.

€ Improved precision in tunability
& Diversification of tuning targets
€ Expansion of tunable regions

Generating graphs Generating graphs that  Generating graphs in
similar to training data are similar to a subset regions not present in

(conventional) of training data the training data
(current state) (future)
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Summary

¥ Current Status

€ The graph generation problem involves sampling graphs with
desired features from the huge space of graphs.

€ Generation techniques have become active in research, shifting
from random generation to deep graph generators.

¢ER, WS, BAmodel = GraphGen, GraphTune

€ Future Prospects

€ Conditional generation techniques, in particular, are promising as
they are still in the early stages of development.

€ Once the technology for conditional graph generation matures, it
may bring benefits to classical graph theory research as well.
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Deep Graph Generators — F-GraphTune

€4 An enhanced version of GraphTune, a generative model
incorporating a feature estimator feedback mechanism for
higher accuracy.

& Feature estimator estimates a conditional vector representing the
graph's characteristics from the reconstructed sequence.

® Alternating training between GraphTune and Feature estimator.

Sequence
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Deep Graph Generators — GraphGen
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2"d order random walk
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