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Motivation

▶ Concept drift in flow features from different environments
(domains) made it difficult for machine learning model to
identify flows.

▶ Domain adaptation capability describe the ability of an NIDS
to identify flows from different environments.

Goal
Improve the domain adaptation capability of Network Intrusion
Detection Systems.

Related Work: Energy-based Flow Classifier (EFC)1

1Pontes et al., “A New Method for Flow-Based Network Intrusion Detection
Using the Inverse Potts Model”.
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Flow-based NIDS

A network traffic flow is

▶ a sequence of packets carrying information between two hosts
that shares common properties, such as the 5-tuple: Src IP, Src
Pt, Dst IP, Dst Pt, Proto.

Flow-based NIDS is

▶ a system that utilized the properties of network traffic flows to
determined if they represent anomalous activity.
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Transformers (1/2)

Bidirectional Encoder Representations from Transformers (BERT) is a
language model that utilizes Transformer Encoders and Masked
Language Modeling (MLM) task pre-training.

In MLM task, 15% of tokens were selected for prediction, and the
training objective was to predict the selected token given its context.
The selected token is

▶ replaced with a [MASK] token with probability 80%,
▶ replaced with a random word token with probability 10%,
▶ not replaced with probability 10%.
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Transformers (2/2)

To identify anomalous flows, BERT is then fine-tuned with Named
Entity Recognition (NER) task.

NER is structured as:

▶ taking an unannotated block of text (a sequence of flows).
▶ producing an annotated block of text that highlights the names

of entities (marks flows as anomalous).
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Hypotheses (1/2)

▶ Features within a flow underwent major shift in their
distributions between different environments.

▶ Context are flows that appear at roughly the same time at the
target flow.

▶ A sequence of flows is the collection of the target flow and its
context.

▶ Relation information between each flows can be infer from the
sequence.
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Hypotheses (2/2)

Figure: Two flow sequences. Though the flows in bold share the same properties,
in sequence one they are benign, in sequence two they are anomalous.
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Why use Transformer (BERT)?
and not RNN (LSTM)?

▶ Flows are not captured in perfect chronological order.
▶ RNN relies on the state of the previous input.
▶ Transformer process the sequence as a whole, small changes in

the ordering of flow will probably not impact its performance.
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Proposal (1/4)
Overview

Pre-processing

▶ discretize and tokenize features.

Model

▶ BERT

Training

▶ Pre-training with Masked Language Modeling task
▶ Fine-tuning with Named-entity Recognition task
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Proposal (2/4)
Pre-processing

▶ Perform data binning, where each bin contains similar number of
values

▶ Each bin is represented as a token

Figure: Feature binning upper thresholds
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Proposal (3/4)
Training

Pre-training

▶ Train with Masked Language Modeling task
▶ Train with only benign flows
▶ Weights of the output layer is shared with the embedding layer
▶ The output is the probability of tokens

Fine-tuning

▶ Train with Named Entity Recognition task
▶ Train with benign and anomalous flows
▶ Output layer is an MLP with two output neuron
▶ The output is the probability of being benign and anomalous
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Proposal (4/4)
Inference

The fine-tuned model is used as an NIDS
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Figure: Proposed method model and data flow
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Data sets (1/2)

CIDDS-001 and CIDDS-002 intrusion detection benchmark data sets
are used for training and evaluation

Figure: CIDDS features, Date first seen, Src IP, Dst IP discarded
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Data sets (2/2)

Figure: Training data: 4 data sets from 3 network environments

▶ CIDDS-001 balanced is derived from CIDDS-001 internal by
subsampling the benign flows

▶ Due to subsampling, the distribution of flows in contexts are
different from the original

L. G. Nguyen, K. Watabe (NUT) IEEE ICC 2023 May 30, 2023 14 / 19



Experiment Setup

BERT configuration: 1 encoder, 1 attention head, hidden size 768

Training parameters:

▶ batch size 512, sequence length 128
▶ Optimizer: Adam, learning rate 1e−5
▶ Criterion: CrossEntropyLoss
▶ Mask Language Modeling 400 iterations, Named Entity

Recognition 1500 iterations

Comparison targets:
▶ Energy-based Classifier (EFC), Decision Tree (DT), K-Nearest

Neighbors (KNN), Multilayer Perceptron (MLP), Naive Bayes
(NB), Support Vector Machine (LinSVM), AdaBoost (AB),
Random Forest (RF)
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Performance Evaluation (1/2)

▶ Our proposal exhibit better Accuracy and F1-score compare to
classical machine learning techniques.

▶ Training on CIDDS-001 result in better performance in
comparison to CIDDS-001 balanced

Figure: Test results on CIDDS-001 external
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Performance Evaluation (2/2)

▶ Similar results are achieved on CIDDS-002
▶ Changing the distribution of flows in a context greatly affect

anomaly detection performance

Figure: Test results on CIDDS-002
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Conclusion and Future Work

▶ Better domain adaptation capability is observed for the
proposed model over traditional ML approaches.

▶ There is contextual information in flow data. Classification
performance of the proposed model degrade when flows are
shuffle during training.

▶ Using the full transformer architecture is very resource
intensive for an NIDS.
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Future Work

▶ Statistical approach, using unlabeled, score-based classification.
▶ Lightweight mechanism to summarize information from flow

sequence.
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