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ABSTRACT Graphs are data structures that represent abstract relationships between elements and are
widely used across various domains. The ability to generate graphs with specific features is crucial for
many applications. Recent advances in deep learning have led to progress in graph generation, enabling
models to reproduce structural features observed in real-world graphs. A significant recent focus in this
area is conditional graph generation, which allows models to tune desired features during the generation
process. Among recent efforts in this direction, GraphTune was developed to support continuous tuning of
graph features. Building on this approach, this paper introduces F-GraphTune, a model designed to improve
the accuracy of feature specification in generated graphs. F-GraphTune incorporates a Feature Estimator
(FE) into the GraphTune framework, which provides feedback on the feature values of the generated graphs.
Experiments using a real-world graph dataset demonstrate that F-GraphTune outperforms existing models,
including GraphTune, with up to a 53.7% improvement in accuracy of feature specification.

INDEX TERMS Graph generation, Conditional VAE, LSTM, Graph feature, Generative model.

I. INTRODUCTION
Graph generative models are becoming a key technology
for supporting diverse graph data applications across multi-
ple domains. In recent years, graph data applications have
expanded in areas such as communication networks, social
networks, databases, and cheminformatics. Representative
examples include node classification, community detection,
query acceleration, and drug discovery [1]. At the same time,
the importance of graph-based simulations have increased
for uncovering critical information in data mining, where
repeated simulations serve as a fundamental approach [2].
However, researchers and professionals often face limited ac-
cess to real-world graph data due to privacy concerns or insuf-
ficient measurements. Graph generative models address this
by augmenting limited real-world graph data and expecting
future or unknown graphs for applications such as predicting
network growth or discovering new molecular structures.

Traditionally, stochastic models that generate graphs based
on pre-defined edge and node probabilities have been de-
veloped, with a focus on a single structural aspect. Promi-
nent examples include the Erdős-Rényi (ER) model [3],
Watts-Strogatz (WS) model [4], and Barabási-Albert (BA)
model [5]. These models accurately capture a specific struc-

tural feature, such as randomness [3], small-worldness [4],
scale-free properties [5], or node clustering [6]. However,
they are not adaptable to real-world graphs with multiple
interacting features and cannot ensure the comprehensive
reproduction of all graph features beyond the targeted one.
Machine learning-based generative models for graphs aim

to learn features from graph data and comprehensively re-
produce them, leveraging machine learning techniques [7]–
[18]. In recent years, learning-based graph generation has
attracted significant attention, and various methods have been
investigated. While many models focus on generating small
graphs, particularly for molecular design, recent work has
expanded to relatively large graphs, including citation and
social networks. These studies reproduce multiple features
that capture the global properties of graphs, such as average
shortest path length, clustering coefficient, and the power-law
exponent of the degree distribution.
A recent trend in machine learning-based graph gener-

ative models is conditional graph generation, and various
models, including our previously proposed GraphTune [19],
[20], have been investigated. Most existing conditional gen-
erative models exhibit inherent issues, such as dependence
on domain-specific knowledge in molecular chemistry [11],
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[13], [15] and the inability to continuously tune global-level
structural features [8], [12], [21], [22]. GraphTune, as pro-
posed in our prior works, addresses these issues and en-
ables the continuous tuning of global-level structural features
across various graph domains. Although some studies have
attempted to disentangle latent spaces under specific condi-
tions [23], to the best of our knowledge, GraphTune remains
the only graph generativemodel capable of continuous adjust-
ment of global-level structural features applicable across di-
verse domains, including social networks and citation graphs.

While GraphTune was an innovative model enabling the
continuous tuning of features in generated graphs, it faced
challenges with tuning accuracy. GraphTune shifts the dis-
tribution of features in generated graphs continuously, uti-
lizing a Long Short-Term Memory (LSTM)-based Condi-
tional Variational AutoEncoder (CVAE). As demonstrated
in Reference [20], GraphTune can effectively tune global-
level structural features, such as average shortest path length,
clustering coefficient, and the power-law exponent of the de-
gree distribution. Although the distribution of features shifts
continuously in the generated results, the mean of certain
featuresmay not precisely approach the specified target value.
Moreover, due to the high variance in the feature distribution,
accurately specifying a feature becomes difficult. This intro-
duces the possibility that generated graphs may exhibit fea-
tures significantly deviating from the specified target values.

In this paper, we propose F-GraphTune, an extension of
the conventional GraphTune model that incorporates a Fea-
ture Estimator (FE). FE estimates the feature values of the
generated graphs and calculates the error relative to the spec-
ified values. This error is then fed back into GraphTune
through neural networks within FE, enhancing the accuracy
of graph generation. The two models, GraphTune and FE,
employ an alternate training algorithm that trains both models
alternately, freezing the weight updates for one model at
a time, to prevent information about the specified feature
from leaking into the FE. F-GraphTune not only retains the
conventional method’s ability to reproduce graph features but
also improves the tunability of these features through FE.

In summary, the main contributions of this paper are as
follows:

• We propose a novel learning-based graph generative
model, F-GraphTune, which extends GraphTune by in-
tegrating FE, a module that estimates the feature values
of the generated graph. F-GraphTune achieves higher
accuracy in specifying feature values compared to the
conventional GraphTune model, as FE provides feed-
back on feature errors to GraphTune.

• We further propose an alternate training algorithm to
effectively train the two models, GraphTune and FE,
while preventing data leakage from GraphTune to FE.
This algorithm ensures that FE accurately estimates val-
ues solely from the graphs generated by GraphTune,
even when graph feature values are provided as inputs
to GraphTune.

• We compare F-GraphTune with recent conditional graph
generative models using a real graph dataset. The results
show that the RMSE of the features of generated graphs
in F-GraphTune is up to 53.7% lower than that in Graph-
Tune.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on graph generative models.
Section III defines the problem of generating graphs with
specified features. Section IV presents GraphTune, the basis
of the proposed model. Section V details the model architec-
ture and the associated training and generation algorithms.
Section VI reports the empirical evaluations of F-GraphTune
and baseline models. Section VII discusses the study’s limita-
tions and potential future work. Finally, Section VIII provides
the conclusions.

II. RELATED WORKS
Graph generation has developed over several decades, result-
ing in an extensive body of literature contributed by numerous
researchers. One of the earliest and most fundamental models
is the Erdős-Rényi model, introduced in 1959, which gener-
ates random graphs based on simple probabilistic rules. In
the late 1990s and early 2000s, two influential models [4],
[5] were proposed that successfully reproduced key struc-
tural properties of graphs, including small-world networks
and power-law degree distributions. These models attracted
significant attention and established the foundation for further
advances in the field. Since these pioneeringworks, numerous
stochastic graph generation methods have been developed,
many inspired by these early models [18], [24]–[26]. Si-
multaneously, efforts to quantify various structural features
of graphs have increased, allowing for a more detailed un-
derstanding of their properties. A common characteristic of
traditional stochasticmodels is their focus on reproducing one
or a few specific graph features—such as small-worldness,
power-law degree distributions, or local clustering—rather
than attempting to capture the full complexity of graph fea-
tures. As a result, these models are limited in their capacity to
generate graphs that can serve as realistic substitutes for real-
world graphs, which typically display a complex combination
of multiple features.
On the other hand, learning-basedmodels that aim to repro-

duce real-world graphs have been studied, and in particular,
the recent trend has shifted toward conditional graph genera-
tion. Such models have been applied across various domains,
including molecular design and social network modeling,
and their development has been summarized in recent sur-
vey articles [16]–[18]. In the area of unconditional graph
generation, sequence-based approaches that convert graphs
into sequential representations have achieved notable suc-
cess [7]–[9], [14]. For conditional graph generation, domain-
specific models have been developed for tasks in chemin-
formatics [27], [28], evolutionary biology [29], and natural
language processing [30], [31]. However, these models often
depend on specialized knowledge and are not easily appli-
cable to general-purpose graph generation. Models such as
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DeepGMG [8], SCGG [21], andGraphGUIDE [22] overcome
this limitation by supporting graph generation based on lo-
cal structural patterns, including hexagons, n-rings, and n-
cliques.

Meanwhile, CondGen [12] and GraphTune [20] focus on
global-level structural features rather than local patterns.
CondGen allows the specification of categories of global
structural properties, such as average shortest path length
and the Gini index, using a variational generative adversarial
framework. The GraphTune model we have proposed enables
continuous tuning of global-level features, including average
shortest path length, clustering coefficient, and modularity,
and demonstrates superior performance compared to Cond-
Gen [20].

III. PROBLEM FORMULATION
The mathematical notation and formulation used in this paper
follow those of GraphTune [20]. We consider undirected,
connected graphs without self-loops. By convention, a graph
is denoted as G = (V ,E), where V and E represent the set of
nodes V = {v1, v2, . . . , vn} and the set of edges E = {(x, y) |
x, y ∈ V}, respectively. We let Ω = {G1,G2, . . . } denote the
universal set of graphs.

We consider a mapping F : Ω → A, where a graph
Gi ∈ Ω is mapped to a feature vector AGi ∈ A, defined by
F(Gi) = AGi = [α1

Gi
, α2

Gi
, · · · ]T . The jth component αjGi

of
the vector AGi represents a structural feature of the graph Gi.
Each feature is expressed as a real number, i.e., αjGi

∈ R. For
example, the elements of AGi may correspond to features such
as the average shortest path length.

According to the formulation of GraphTune [20], we define
the task of generating a graph with specified features as the
problem of inferring the inverse image from feature vectors
back to graphs. We define the inverse mapping F−1(·) of the
function F(·), where a graphGi can be obtained by evaluating
F−1(AGi) = {Gi, . . . }. We address the inference problem of
estimating an approximate inverse mapping F̂−1(·) using a
subset G of the universal set Ω. Solving this problem enables
the generation of a new graph G′

i from a feature vector AG′
i
,

in which the values of the features are replaced with arbitrary
ones. Since the complete setΩ of graphs is not accessible, the
inference must rely on a subset G drawn from an available
dataset.

IV. GRAPHTUNE
F-GraphTune is an extension of GraphTune with the incor-
poration of FE. In this section, we explain the architecture of
GraphTune, which serves as the foundation for F-GraphTune.

A. DFS CODE
To input graph data into neural networks, GraphTune trans-
forms each graph into a DFS code, which is a sequential
representation. The algorithm employs a depth-first search
to assign timestamps to all nodes and generates a sequence
of 5-tuples (tu, tv,L(u),L(e),L(v)) corresponding to the dis-
covered edges e = (u, v) in the order of traversal. In this
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FIGURE 1. The architecture of GraphTune. GraphTune composed of CVAE
with LSTM-based encoder and decoder. A graph Gi in the graph dataset G
is converted to a sequence Si ∈ S of 5-tuples by using DFS code. The
sequence is processed by an LSTM-based encoder to map the graph to a
latent space. The decoder generates a sequence of 5-tuples from a latent
vector, and the sequence is converted to a generated graph. The condition
vector is input to both the encoder and decoder.

representation, tu denotes the timestamp of node u, and L(·)
indicates the label of a node or edge, respectively. An End
Of Sequence (EOS) token (EOSt ,EOSt ,EOSL , 1,EOSL) is
appended at the end of each graph sequence to handle cases
where graph sizes vary.

B. MODEL ARCHITECTURE
GraphTune consists of a CVAE with LSTM-based encoder
and decoder, as shown in Fig. 1. During training, a set S of
sequence data Si = {s0, s1, . . . } obtained by converting a
graph Gi ∈ G into DFS code is input into the model. Concur-
rently, values of graph features that we intend to specify are
calculated and then input into themodel as a set C of condition
vectors C i. Following the architecture of a standard VAE, the
encoder Fenc(Si,C i) maps sequence data Si to parameters µ
and σ2. The latent vector z are sampled from a multivariate
normal distributionN (µ,σ2) with dimension l. Namely, the
encoder can be expressed as follows.

µ = fµ(Si,C i), σ2 = fσ2(Si,C i), z ∼ N (µ,σ2). (1)

Here, we summarize these functions by the following single
function:

z = Fenc(Si,C i). (2)

The decoder Fdec(z,C i) learns to reconstruct the original
sequence Si from a latent vector z and the condition vector
C i, outputting a reconstructed sequence S̃i. Then, the decoder
can be outlined as follows.

S̃i = Fdec(z,C i). (3)

The loss function for the training is composed of two
parts: a Kullback-Leibler divergence loss (KL loss) and a
reconstruction loss. The KL loss regularizes the distribution
of the latent vector to be the standard normal distribution, and
can be written as

Lossenc(µ,σ) =
1

2

L∑
l=1

(1 + log(σ2
l )− µ2

l − σ2
l ). (4)
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The reconstruction loss ensures the predicted sequence S̃i
is similar to the input sequence Si from the dataset, and is
defined as

Lossdec(S̃i,Si) = −
1

|Si|

|Si|∑
j=0

∑
c

sj(c) log(s̃j(c)), (5)

where sj(c) and s̃j(c) represent component c ∈ {tu, tv,L(u),
L(e),L(v)} of si and s̃j, respectively. GraphTune’s overall
loss, denoted as Losstune, can be expressed as follows.

Losstune(µ,σ, S̃i,Si) = β · Lossenc(µ,σ) + Lossdec(S̃i,Si),
(6)

where β is a weight given as a hyperparameter.
In the generation process after training, we provide the

decoder with the condition vector C∗, whose elements are
the specified feature values, and the latent vector z, randomly
sampled from the multivariate standard normal distribution
N (0, I). Then, the decoder generates a sequence data Ŝ that
corresponds to a graph with features according to C∗. In
summary, the behavior of the decoder is as follows:

z ∼ N (0, I), S̃ = Fdec(z,C∗). (7)

V. F-GRAPHTUNE: FEEDBACK-ENHANCED GRAPH
GENERATIVE MODEL WITH TUNABLE FEATURES
In this paper, we extend GraphTune by incorporating an
LSTM-based FE component, which estimates the value of the
structural features from the graph reconstructed by Graph-
Tune. This proposed model, which consists of two compo-
nents, GraphTune and FE, is referred to as F-GraphTune:
Feedback-enhanced graph generative model with tunable fea-
tures. An alternate training algorithm is also proposed and
applied to prevent the actual graph features that are input to
the GraphTune component from leaking into the FE compo-
nent when training F-GraphTune. In this section, we will start
by explaining the preprocessing of the dataset, which is the
same as that of GraphTune, in Section V-A. After that, we will
describe the architecture of F-GraphTune in Section V-B. We
will then provide a detailed account covering the training and
generation processes from Section V-C to V-E.

A. PREPROCESS
The preprocessing of a dataset in F-GraphTune is the same
as that of GraphTune. In the preprocessing, each graph Gi

within a graph dataset G is converted into a sequence Si with
the DFS code, creating a set S of sequences Si. Palarelly,
for each graph Gi within a graph dataset G, we compute a
vector C i whose elements represent values of target features
and create a set C of condition vectorsC i. F-GraphTune learns
from the set S of sequences and the set C of condition vectors
to achieve a generative model.

B. MODEL ARCHITECTURE
The architecture of F-GraphTune involves two main com-
ponents: a GraphTune component and an LSTM-based FE
component as shown in Fig. 2. The GraphTune component,
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FIGURE 2. The architecture of F-GraphTune. The architecture of
F-GraphTune involves two main components: GraphTune and an
LSTM-based Feature Estimator (FE). The FE component takes sequence
data generated by GraphTune as input and outputs an estimate for the
feature vector of the generated graph corresponding to the provided
sequence data. The FE loss Lossest is defined as the difference between
the estimate and the condition vector C i . Since the condition vector C i
represents the actual features of graph Si , the FE component provides
feedback on errors of features of generated graphs to the GraphTune
component. Since the GraphTune component takes a condition vector as
input, it may leak information regarding errors to the FE component,
whereas the alternate training algorithm allows for appropriate error
feedback avoiding the problem of the leakage.

identical to the original GraphTune described in Section IV,
is responsible for learning graph features from a set S of
sequences and generating graphs S̃. On the other hand, the
FE component computes the features of the generated graphs
and provides feedback on the errors from the intended target
values. By using the neural network-based FE to compute
values of features, it becomes possible to backpropagate the
error between the specified values of features and the values
of features of generated graphs to the neural network of
GraphTune.

The GraphTune component functions similarly to the orig-
inal GraphTune, taking a set S of sequences converted from
graphs and a set C of their condition vectors as input, and re-
constructing a set S̃ of sequences S̃i as output. The processes
in the GraphTune component is as shown in Eqs. (2) and (3).
A sequence S̃i output from the GraphTune component is

input to the FE component, and then the FE component
outputs a vector C̃ i estimating the features of the graph G̃i

corresponding to the sequence S̃i. To treat sequence data, we
employ a fully connected layer and a stacked LSTM as the FE
component. The jth element s̃j of the sequence S̃i is embedded
with a single fully connected layer femb. The embedded vector
is then passed into each LSTM block represented by fest. The
initial hidden state vector h0 is initialized as a zero vector 0.
The stacked LSTM with the embedding layer femb processes
a sequence S̃i of length k = |S̃i| by recursively applying the
LSTMblock fest to hidden state vector hj. The output hk of the
last LSTM block is fed to a single fully connected layer ffeat.
Summarizing the above, the process of the FE component in
F-GraphTune is as follows.

h0 = 0, (8)

hj+1 = fest(hj, femb(s̃j)) (j = 0, 1, . . . , k − 1), (9)

C̃ i = ffeat(hk). (10)
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C. LOSS FUNCTIONS
In addition to the KL loss and reconstruction loss employed
in the original GraphTune, F-GraphTune incorporates an es-
timation loss, Lossest, which provides feedback on feature
errors in the generated graphs, as computed by the FE com-
ponent. The estimation loss Lossest is defined as follows.

Lossest(C̃ i,C i) = ∥C̃ i − C i∥22. (11)

Lossest signifies the errors between the estimated feature
values C̃ i of the generated graph and the feature values C i

we intended to specify. Note that this error includes both the
reconstruction error of graphs by the GraphTune component
and the estimation error of graph feature values by the FE
component. If the FE component can accurately estimate
the feature values of generated graphs, backpropagating the
estimation loss allows for appropriate feedback to be provided
to the GraphTune component. The training process of F-
GraphTune alternates between the GraphTune and FE com-
ponents, with the estimation loss applied during the training
of both components. A detailed explanation of the training
process is provided in Section V-D.

The overall loss Lossall for the training of F-GraphTune is
defined by the following.

Lossall(µ,σ, S̃i,Si, C̃ i,C i)

= Losstune(µ,σ, S̃i,Si) + γ · Lossest(C̃ i,C i), (12)

where Losstune represents the loss for GraphTune explained
as Eq. (6) in Section IV. The scale of Losstune and Lossest
is balanced by weight γ. For the training of the GraphTune
component, Eq. (12) is used, while for the training of the FE
component, Eq. (11) is utilized.

D. ALTERNATE TRAINING ALGORITHM
In F-GraphTune, an alternate training algorithm is adopted

to address the issue of data leakage regarding condition vec-
tors. This algorithm alternately trains the GraphTune com-
ponent and the FE component. In our proposed approach,
despite inputting a condition vector into the GraphTune com-
ponent, the FE component attempts to estimate the condition
vector. Consequently, standard training can lead to data leak-
age from the GraphTune component to the FE component,
causing the FE component to simply output the input feature
values. In the alternate training algorithm, during the training
of the GraphTune component, the weight parameters of the
FE component are frozen. Conversely, during the training
of the FE component, the FE component is trained indepen-
dently.

The alternate training algorithm consists of three steps: 1)
training of the GraphTune component, 2) graph generation
with the GraphTune component, and 3) training of the FE
component. The details of the algorithm are shown in Algo-
rithm 1. For a given set S = {S1,S2, . . . } of sequences and
the corresponding set C = {C1,C2, . . . } of condition vec-
tors, Algorithm 1 returns learned functions Fenc, Fdec, fenb,

Algorithm 1 Training of F-GraphTune
Require: Set of sequences S = {S1,S2, . . . },

Set of condition vectors C = {C1,C2, . . . }
Ensure: Learned functions Fenc, Fdec, femb, fest, and ffeat
1: for N times do
2: for M times do
3: Lossall ← 0
4: for i from 1 to |S| do
5: Ŝi ← Fdec(Fenc(Si,C i),C i)
6: if N = 1 then
7: Lossall ← Lossall + Losstune
8: else
9: h0 ← 0
10: for j from 0 to k − 1 do
11: hj+1 ← fest(hj, femb(sj))
12: end for
13: C̃ i ← ffeat(hk)
14: Lossall ← Lossall + Losstune + γ ·

Lossest(C̃ i,C i)
15: end if
16: end for
17: Back-propagate Loss and update the weights of

GraphTune component (i.e., Fenc and Fdec)
18: end for
19: S ′ ← S
20: for n times do
21: z ∼ N (0, I2)
22: C ← sample from C
23: Add Fdec(z,C) into S ′
24: end for
25: for L times do
26: Lossest ← 0
27: for i from 1 to |S ′| do
28: C ′

i ← calculate features of S ′i
29: h0 ← 0
30: for j from 0 to k − 1 do
31: hj+1 ← fest(hj, femb(s′j ))
32: end for
33: C̃ i ← ffeat(hk)
34: Lossest ← Lossest + Lossest(C̃ i,C ′

i)
35: end for
36: Back-propagate Loss and update the weights of FE

component (i.e., femb, fest, and ffeat)
37: end for
38: end for

fest, and ffeat. The two components are alternately trained by
iterating the above three steps N times (Lines 1-38).
As the first step, the GraphTune component is trained

through M iterations (Lines 2-18). The value of overall loss
(i.e. Eq. (12)) is initialized to 0 (Line 3), and then the total
value of the loss is calculated for all sequences in S (Lines 4-
16). The GraphTune component takes Si and C i as inputs
and reconstructs S̃i through the encoder and decoder (Line
5). For all sequences in the dataset, the value of Lossall is
accumulated (Lines 6-15). However, in the initial iteration,
we disregard the Lossest that is influenced by the accuracy
of the FE component since the FE component hasn’t been
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trained yet. In the iterations beyond the second one, in order to
obtain estimate C̃, the LSTM block fest in the FE component
recursively calculates hj by processing jth element sj of ith se-
quence Si = [s0, s1, . . . , sk−1] inS (Lines 9-13). The estimate
C̃ is calculated from the final output hk using ffeat (Line 13).
Estimation loss γ ·Lossest(C̃ i,C i) is added to the overall loss
(Line 14). The weights of the functions Fenc and Fdec of the
GraphTune component are updated by backpropagating the
loss (Line 17). Note that the weights of femb, fest, and ffeat
are frozen and not updated.

In the second step, n sequences of graphs are generated us-
ing the decoder Fdec that is trained in the first step (Lines 19-
24). In the beginning, a set S ′ of sequences for the training
of the FE component in the third step is initialized (Line 19).
Using a latent vector z that follows a multivariate Gaussian
distribution and a condition vector C randomly sampled from
C, n graphs are generated using the decoder Fdec and added
to S ′ (Lines 20-24).
The third step involves training the FE component in L

iterations (Lines 25-37). First, an estimation loss (i.e. Eq.(11))
is initialized to 0 (Line 26), and then the estimation loss for
all sequences Si in S ′ is calculated (Lines 27-35). Since S ′
includes sequences regarding newly generated graphs, the
features of the graphs are calculated (Line 28). Following
the same procedure as in the first step, the FE component
estimates features, and the estimation loss is calculated and
accumulated (Lines 29-34). Note that during the training of
the FE component, only the estimation loss is considered,
and losses related to the GraphTune component are not taken
into account. The weights of the functions femb, fest, and ffeat
in the FE component are updated by backpropagating the
estimation loss (Line 36). Note that the weights of Fenc and
Fdec are not updated because the loss is not backpropagated
to the GraphTune component.

E. GENERATION
When generating graphs with specified feature values after
training, you can generate the desired graph by providing the
condition vector C, whose elements are the specified feature
values, and the latent vector z to the decoder Fdec of the
GraphTune component. The latent vector z is sampled from a
multivariate Gaussian distribution. The process of generating
graphs in F-GraphTune is exactly the same as the generation
process in the original GraphTune shown in Eq. (7). Note that
the FE component is utilized only during training and not
during generation.

VI. EXPERIMENTS
We verify that F-GraphTune can tune values of structural
features with high accuracy. In this section, we present a
performance evaluation of F-GraphTune on a real graph
dataset extracted from the Twitter who-follows-whom net-
work. Through the evaluation, we show that F-GraphTune
yields better performance than the conventional generative
models including the original GraphTune.

A. BASELINES
To confirm the basic characteristics of F-GraphTune in a con-
ditional graph generation task, we compare the performance
of F-GraphTune with two baseline models: GraphTune [20]
and CondGen [12].

GraphTune
The original GraphTune serves as the base model for F-
GraphTune; therefore, by comparing it with GraphTune, we
can accurately evaluate the effectiveness of feedback from the
FE component. To the best of our knowledge, GraphTune is
the only model that is oriented towards the continuous tun-
ing of global-level structural features in human relationship
graphs including social networks and citation networks. In
the evaluations in Section VI, we use the hyperparameters
recommended in the paper [20].

CondGen
CondGen employs conditional structure generation through
graph variational generative adversarial nets and is one of the
few models that achieves a conditional generation for general
graphs that is not limited to a specific domain. Unlike the
original GraphTune and F-GraphTune, which continuously
tune feature values, CondGen can only specify feature values
as categorical values using datasets that are pre-categorized
by labels. In the evaluations in Section VI, we use the hyper-
parameters recommended in the paper [12].

B. SETTINGS
The hyperparameters of a model in F-GraphTune are set as
follows. For the FE component, we use single-layer LSTM
blocks for fest, which has a hidden state vector of dimension
512. The rate of dropout on the LSTM layers is set to 0.5. we
add a dropout layer with a dropout rate of 0.3 before the single
fully connected layer ffeat. The hyperparameters related to the
GraphTune component are set to the same values as those
adopted in the original GraphTune [20].
We train the neural networks with a batch size of 37 using

the Adam optimizer. The initial learning rate is set to 0.001.
These configurations are the same as those of the original
GraphTune. We set the number of training iterations for the
GraphTune component M and the FE component L to 5000
each. The number of iterations for the alternate training al-
gorithm N is set to 2. The number of graphs generated for
training the FE component, denoted as n is set to be the
same as the number of provided sequences, denoted as |S|.
Additionally, we configure the weight parameters: β is set to
3, and γ is set to 1000 for loss calculation.
To evaluate the performance of F-GraphTune on real

graphs, we used the graph dataset that is utilized in the evalua-
tion of the original GraphTune [20]. The graphs in the dataset
are sampled from the Twitter who-follows-whom graph in the
Higgs Twitter Dataset [32]. The detailed sampling method
can be found in the original GraphTune paper. In the eval-
uations, we split the dataset into two parts: the training set
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and the validation set. The size ratio of the training set and
the validation set are 90% and 10%, respectively.

As structural features of graphs, we focus on the following
5 features, which were also used in the original GraphTune
paper: average of shortest path length, average degree, mod-
ularity [33], clustering coefficient, and a power-law exponent
of a degree distribution [34]. These global-level structural
features are selected from survey papers [35], [36] on the
measurement of complex network structures, and they have
been widely used as graph features of human relationship
graphs [37], [38]. For the creation of the dataset, the value
of features is rounded to four decimal places.

C. METRICS
In this section, we demonstrate that F-GraphTune outper-
forms conventional models in accurately generating graphs
with specific structural features. Performance comparison
among three models, F-GraphTune, GraphTune, and Cond-
Gen, is provided.

We trained F-GraphTune, GraphTune, and CondGen using
the training set described in Section VI-B, and generated
graphs with specific conditions using these trained models.
We individually trained these 3 models for each of the 5
focused features mentioned in Section VI-B, resulting in a
total of 15 (= 3 × 5) trained models. After the training
process, we generated 300 graphs for each model. For each
feature, we selected 3 typical values from the range of values
in the training set to use as the condition vector values. The
typical values we selected are the same as those used in the
original GraphTune paper [20]. In the generation process of
both F-GraphTune and GraphTune, we input the condition
vectors to the models to specify the feature values of the
generated graphs. Since CondGen requires pre-categorized
training sets with labels, the training sets are divided into 3
categories using thresholds at the midpoint between typical
values.

The performance metrics used for evaluation are Root
Mean Squared Error (RMSE). The RMSE metric is defined
by the following:

RMSE =

√
1

m

∑m

i=1
(c∗ − c′i)2, (13)

where c∗ and c′i represent the values specified by the condition
vector and the values of the corresponding features for the
graph generated in the i-th iteration, respectively.m represents
the total number of generated graphs. Since we generate
graphs for three typical values of the feature, we compare the
average of RMSE for the three typical values.

D. PERFORMANCE EVALUATIONS
The summary of the results of generation for Twitter dataset
are listed in TABLE 1. The values in the columns of F-
GraphTune, GraphTune, CondGen represents RMSE of the
features in graphs generated by each model. The column
of Twitter dataset provides statistical information (mean and

percentiles) about the distribution of features of graphs in-
cluded in the dataset for reference. The best and second-best
performances among the three models under each condition
for a particular feature are highlighted in red and blue, re-
spectively. For CondGen, since all generated graphs were dis-
connected graphs, we couldn’t calculate the average shortest
path length of the graphs. Instead, we depicted ‘‘–’’ in the
table. Additionally, we calculated the average shortest path
length of the largest connected component and presented it in
parentheses in the TABLE 1 for reference.
According to the results in TABLE 1, we can confirm that

F-GraphTune can accurately specify the feature values of the
generated graphs. The RMSE of the graphs generated by F-
GraphTune is smaller compared to the other models in most
cases, and up to 53.7% reduction of error is achieved. Overall,
these results show that feedback from the FE component plays
a generally beneficial role in enhancing graph generation
accuracy.
To validate the accuracy of the generated graphs, we also

evaluated the accuracy of the FE component. The results are
shown in Fig. 3. The horizontal axis indicates the feature
values estimated by the FE component, while the vertical
axis indicates the corresponding ground-truth feature values
of the generated graphs. For features such as the clustering
coefficient and the power-law exponent of the degree distri-
bution—where the performance improvement achieved by F-
GraphTune was limited—the accuracy of the FE component
was found to be relatively low. In particular, the power-law
exponent of the degree distribution is notably difficult to
estimate accurately, as its value tends to be unstable when de-
rived from small graphs used in the evaluation. These results
suggest that the performance of F-GraphTune is influenced
by the estimation accuracy of the FE component.

VII. LIMITATIONS AND FUTURE DIRECTIONS
Although F-GraphTune resolved a critical issue in GraphTune
regarding the accuracy of graph generation, it still shares
some limitations with GraphTune.

Accuracy of Feature Estimation
The accuracy of the feature estimation in the FE component
is not sufficient to achieve high accuracy in graph generation.
Despite its effectiveness in many cases, F-GraphTune does
not consistently achieve sufficient accuracy improvement in
feature estimation across all feature types. This limitation
arises from the fact that the FE component does not con-
sistently produce accurate feature values for the graphs gen-
erated by the GraphTune component. One possible way to
address this issue is to employ a more sophisticated model for
the FE component, such as a Transformer-based architecture.

Generation of Large Graphs
While the number of nodes in our dataset is relatively large
compared to previous studies on learning-based conditional
graph generation conducted before GraphTune, it is still con-
sidered small in the context of social networks. At present,
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TABLE 1. RMSE for 5 features in graphs generated by F-GraphTune, GraphTune, and CondGen for the Twitter dataset. The best and second-best
performances among the three models under each condition for a particular feature are highlighted in red and blue, respectively.

Global-level structural feature F-GraphTune GraphTune CondGen Twitter dataset
RMSE RMSE RMSE average

(25%ile / median / 75%ile)
Average shortest path length 0.969 2.093 – ( 1.64 ) 4.26

(3.40 / 4.09 / 4.84)
Average degree 0.666 0.822 0.868 3.59

(2.96 / 3.44 / 3.92)
Modularity 0.154 0.163 0.285 0.550

(0.509 / 0.563 / 0.617)
Clustering coefficient 0.178 0.194 0.172 0.203

(0.152 / 0.196 / 0.251)
Power-law exponent 0.985 0.944 1.73 4.28

of a degree distribution (2.91 / 3.48 / 4.23)

both GraphTune and F-GraphTune are unfortunately unable
to generate graphs with more than 100 nodes. Overcoming
this limitation will require further innovation. Hierarchical
generation [15] and combining with traditional statistical ran-
dom graph models are promising approaches in this context.

Generation of Extrapolation
Though F-GraphTune has enhanced the graph generation
accuracy of GraphTune by incorporating the FE component, it
did not improve the extrapolation performance of GraphTune.
The FE component is trained on graphs from the original
dataset and those generated by the GraphTune component.
Therefore, it lacks the ability to provide accurate feedback
for graphs that fall outside the range of feature values present
in the original dataset. However, the technique of specifying
graph features provided by F-GraphTune (or GraphTune)
could be a crucial technology for addressing the challenge
of extrapolation in graph generation tasks. When specifying
values near the boundaries of the range of graph features in
the original dataset, some graphs are generated that lie out-
side those boundaries. By extending the original dataset with
graphs generated in this manner, it may be possible to train a
graph generative model capable of performing extrapolative
graph generation.

VIII. CONCLUSIONS
In this paper, we proposed F-GraphTune, a Feedback-
enhanced Graph generative model with Tunable features,
which enables accurate specification of feature values in gen-
erated graphs. F-GraphTune extends GraphTune by incorpo-
rating the FE component, which estimates and provides feed-
back on feature values of graphs reconstructed byGraphTune.
We have also developed the alternate training algorithm that
allows the GraphTune component and the FE component to
cooperate without leaking information regarding the feature
values of input graphs.

We conducted experiments using a graph dataset from
a real social network, and the results demonstrate that F-
GraphTune can tune graph features more accurately than
conventional models. In our experiments, among the five
tuned features, F-GraphTune exhibited the best performance

in 3 features, showing an improvement in accuracy of up to
53.7%.
Based on the experiments conducted in this paper, there

are several promising prospects for F-GraphTune. It is
highly intriguing to explore the boundaries of the space in
which graphs can exist by generating extrapolated graphs. F-
GraphTune can enable us to investigate this space by simul-
taneously specifying multiple interdependent features.
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