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Abstract—Traffic matrix (TM) estimation has been extensively
studied for decades. Although conventional estimation techniques
assume that traffic volumes are unchanged between origins and
destinations, packets are often discarded on a path due to
traffic burstiness, silent failures, etc. This paper proposes a novel
TM estimation method that works correctly even under packet
drops. The method is established on a Boolean fault localization
technique; the technique requires fewer counters though it only
determines whether each link is healthy. This paper extends
the Boolean technique so as to deal with traffic volumes with
error bounds just by a small number of counters. Along with
submodular optimization for the minimum counter placement,
we evaluate our method with real network datasets.

I. INTRODUCTION

Traffic Matrix (TM) including packet drops, i.e., where
and how much packets are dropped on the path, would be
very useful for advanced network engineering; e.g., capacity
planning could consider lost traffic in addition to the traffic
volume, while traffic engineering could avoid bursty links and
failed switch. Conventional TM estimation techniques assume
the strict flow conservation, i.e., traffic volumes are unchanged
along a path from the origin to the destination [1]. Traffic,
however, can be lost due to packet drops in a network.

This paper studies a mathematical model to estimate traffic
volumes with their change along a path. The traffic volumes
will be determined at each link. Though we can easily get
the traffic volumes with their change by counting every path
at every link, the number of counters should be minimized
to reduce the measurement cost. This paper focuses on the
tradeoff between the measurement cost and estimation errors.

Our contributions are summarized as follows: 1) By refor-
mulating the TM estimation for packet drops with Boolean
algebra, a new measurability theory that provides the error
bounds of the traffic volume is established; 2) A submodular
optimization method that minimizes the number of counters is
developed based on the measurability theory; 3) Experiments
with three real network datasets show that the number of
counters in our method is close to the corresponding value
of a conventional Boolean technique in most cases, though
the conventional technique cannot provide the error bounds
and traffic volumes.

II. FORMULATION

A network is represented by a directed graph, G = (V,E).
If there exist some packets forwarded along a path, the path

is called a feasible path P ∈ P , where P is the set of feasible
paths in the network. A path is regarded as a set of arcs.

Let C be a set of counters placed in the network. A counter
is placed at the tail of directed arc ej ∈ E (j = 1, 2, . . . , n)
and maintains the number of packets transmitted into the arc
along the associated path. Each counter is specified by the
pair of arc and path, e.g., (ej , P ) ∈ C and C ⊆ C = E × P ,
and the value is denoted by κj . Packets are classified to the
corresponding counters based on their path using path-oriented
packet classification techniques [2]. Let τj ∈ R be the number
of packets transmitted into ej along P in a time unit; our
model has κj = τj if a counter is placed at (ej , P ). Let τ̂j be
an estimated value of τj .

The packet drop ratio through arc ej is denoted by ℓj =
1 − τj+1/τj ∈ [0, 1]. We assume that every arc has either a
normal state ℓj ≤ ϵ or an abnormal state ℓj ≥ δ, where ϵ < δ;
it is worth noting that our model works without the strong
assumption, ϵ ≪ δ, used in [3]. We assume that every path
observes the equal drop ratio for the same abnormal arc, and
a single arc failure. Packets are dropped only at arcs, not at
vertices.

Our problem is defined as follows: for given G, P , and α,

min
C⊆C

{|C| : C is α-measurable}, (1)

where |C| is the number of counters. α-measurable in the
above problem is defined as follows: The counter set C is
α-measurable if,

∀P ∈ P, ∀ej ∈ P : α · τj ≤ τ̂j ≤
1

α
· τj , (2)

where 0 < α ≤ 1.

III. MEASURABILITY AND OPTIMIZATION

Separable subpath are consisted by placing counters
on paths in our method. A separable subpath Q =
{ej , ej+1, . . . , ek−1} ⊆ E is a part of a feasible path P =
{e1, e2, . . . , el} between a pair of counters {(ej , P ), (ek, P )}
and satisfies (1−δ) < (1−ϵ)k−j . Let Q = {Q1, Q2, . . . , Qm}
be a set of separable subpaths under a counter set C. If
κk/κj < 1− δ, we regard P as abnormal.

In our method, an abnormal arc is specified by solving
a Boolean equation y = A(C)x, where element xj of x
indicates whether ej ∈ E is abnormal while yi of y indicates
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Algorithm 1: Counter Placement
Input: A set of feasible paths P and drop thresholds ϵ, δ.
Output: A set of additional counters X that satisfies

g(X) = g(C).
1 X ← ∅;
2 while ∃x ∈ C : g0(x|X) > 0 do
3 x∗ ← argmaxx∈C g0(x|X);
4 X ← X ∪ {x∗};
5 Q′ ← Separable subpaths of X at ϵ = 0;
6 while ∃Q ∈ Q′ : |Q| − 1 > ⌊log1−ϵ(1− δ)⌋ do
7 X ← X ∪ {(ej+⌊log1−ϵ(1−δ)⌋, P )};
8 Q′ ← Separable subpaths of X;

9 return X;

whether Qi is abnormal. A measurement matrix A(C) = (aij)
is defined as the m× n Boolean matrix of

aij =

{
1 ej ∈ Qi

0 otherwise
. (3)

The j-th column vector is denoted by aj (j = 1, 2, . . . , n). A
matrix A(C) is 1-independent if any column vector of A(C)
is different from each other and none of them equal to zero;
i.e., ∀j ̸= j′ : aj ̸= aj′ and ∀j : aj ̸= 0.

For a feasible path P = {e1, e2, . . . , el}, our estimator
τ̂j = κ1

√
(1− ϵ)j−2 if ej is located on the lower side of the

specified abnormal arc, and τ̂j = κ1

√
(1− ϵ)j−1 otherwise.

The error of τ̂j is bounded by α = (1 − ϵ)d−2 where
d = max{|P | : P ∈ P}. Given the measurement matrix
A(C), sufficient conditions of measurability are described by
the following theorem.

Theorem 1. A counter set C is (1− ϵ)d−2-measurable, if the
measurement matrix A(C) is 1-independent and every feasible
path P has at least one counter on it.

Based on Theorem 1, we approximately solve the prob-
lem (1). To satisfy the condition that every feasible path P
has at least one counter on it in Theorem 1, we initially place
counters C0 at first arcs for every P . Additional counters
X are optimized based on the coverage function g(X) =
|{(j, k) : 0 ≤ j < k ≤ n,aj ̸= ak}|, where aj is j-th column
vector of the measurement matrix A(C0∪X) and a0 is the zero
vector 0. A function g(x|X) represents the gain of counter
x ∈ C added to X: g(x|X) = g(X ∪ {x}) − g(X). The
function g0 is the coverage function for ϵ = 0.

In Algorithm 1, we first solve the problem for ϵ = 0, and
then we convert its solution X0 into a solution XALG for given
ϵ and δ. This is because, when the lower threshold equals to
0, ϵ = 0, the coverage function g0 becomes a submodular
function and a simple greedy algorithm yields an approximate
solution with a theoretical guarantee in polynomial-time [4].

IV. EXPERIMENTS

We perform experiments to evaluate our method using three
configuration datasets. The configuration datasets are obtained

TABLE I
NUMBER OF COUNTERS AND ARC-PAIRS FOR ϵ = 0 AND δ = 1

Internet2 Stanford Purdue

Initial counters |C0| 11,159 331 2,985
Additional counters |X0| 116 65 380
Indistinguishable arc-pairs
per all arc-pairs 0 / 9,730 49 / 8,646 0 / 138,075
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Fig. 1. The number of rows in a measurement matrix.

from Internet21, Stanford backbone network [5], and Purdue
campus network [6].

The optimization results are shown in Table I for ϵ = 0 and
δ = 1. An arc pair (ei, ej) ∈ E2 is indistinguishable if the
corresponding column vectors ai,aj are equal. Though some
arc-pairs are indistinguishable only for Stanford due to restric-
tions of counter placement, most arc-pairs are distinguishable.

The number of rows of measurement matrix (i.e. |XALG| in
our method) depends on threshold δ; Fig. 1 shows the number
of matrix rows for ϵ = 10−5 and 10−5 ≤ δ ≤ 10−1 for
Internet2. Though our method can provide the error bounds
and traffic volumes, for all the datasets, we confirmed that
our method almost converges to the conventional Boolean
technique [3] for δ > 5.0× 10−5

V. CONCLUSION

This paper proposed a TM estimation method that handles
packet drops in a network. With the solid theory about the
measurability based on Boolean matrices, we developed an
optimization algorithm for the minimum counter set. Experi-
ments showed the great performance with real datasets.
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