
VOL. E102-B NO. 4
APRIL 2019

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



IEICE TRANS. COMMUN., VOL.E102–B, NO.4 APRIL 2019
865

PAPER
A Parallel Flow Monitoring Technique
That Achieves Accurate Delay Measurement∗

Kohei WATABE†a), Member, Shintaro HIRAKAWA†, Student Member, and Kenji NAKAGAWA†, Member

SUMMARY In this paper, a parallel flow monitoring technique that
achieves accurate measurement of end-to-end delay of networks is pro-
posed. In network monitoring tasks, network researchers and practitioners
usually monitor multiple probe flows to measure delays on multiple paths
in parallel. However, when they measure an end-to-end delay on a path,
information of flows except for the flow along the path is not utilized in
the conventional method. Generally, paths of flows share common parts
in parallel monitoring. In the proposed method, information of flows on
paths that share common parts, utilizes to measure delay on a path by par-
tially converting the observation results of a flow to those of another flow.
We perform simulations to confirm that the observation results of 72 paral-
lel flows of active measurement are appropriately converted between each
other. When the 99th-percentile of the end-to-end delay for each flow are
measured, the accuracy of the proposed method is doubled compared with
the conventional method.
key words: active measurement, parallel monitoring, probe packets, delay
measurement, end-to-end delay

1. Introduction

In performance evaluation of networks, it is important to ac-
curately measure end-to-end metrics. Service Level Agree-
ments (SLAs) that detail the contractual obligations between
Internet Service Providers (ISPs) and users define criteria of
end-to-end packet loss and delay. ISPs are forced to comply
with SLAs, and validate it. Besides, it is well known that
real-time applications, e.g., audio/video conferencing, IP
telephony, or telesurgery are sensitive to end-to-end packet
loss or delay. Although a loss monitoring depends on a Man-
agement Information Base (MIB) is commonly used in cur-
rent SLAs, advanced SLAs in which metrics along an end-
to-end path is guaranteed are needed for delay/loss sensitive
applications. Hence, the accurate measurement of end-to-
end metrics is a key technology of SLA validation, in order
to strictly guarantee low end-to-end packet loss or delay for
delay/loss sensitive applications. Especially, a high-quantile
measurement of delay distribution is important since large
delay critically affects the performance of delay/loss sen-
sitive applications even if the probability of occurrence is
small.

An active delay measurement in which probe packets
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are injected into a network for measurement is a common
method, and various measurement techniques for active de-
lay measurements have been proposed in prior works. Re-
searchers have tried to achieve accurate measurement with-
out increasing the number of probe packets [1]–[3] since a
large number of probe packets leads to communication over-
heads and the intrusiveness problem [4], [5]. Since a large
delay (that exceeds 150 [ms] as mentioned in ITU-T Recom-
mendation G.114 [6]) is a rare event in the modern Internet,
however, it is difficult to capture a large delay using the lim-
ited number of the probe packets on the path. Therefore,
high quantile of delay distribution is still hard to measure.

Although multiple probe flows are monitored to mea-
sure delays on multiple paths in parallel for most measure-
ment applications, only one probe flow among those multi-
ple probe flows is utilized to measure the end-to-end delay
on a path. In daily operations, Internet service providers
are partly or wholly monitoring end-to-end delays of the
paths on their network. Network researchers and practition-
ers often measure end-to-end delays of multiple paths on a
network to clarify the characteristics of the entire network.
Parallel monitoring of multiple flows is usual for network
monitoring tasks. Since paths of flows share common parts
in parallel monitoring, observation results of a flow can in-
clude information of delays on another path. In Fig. 1, since
both paths of Flow A and B include Edge 2, packets of flow
B experience similar delay with those of Flow A when a
delay is mainly caused by Edge 2. Therefore, the informa-
tion concerning Flow B can be utilized supplementary for
improving the accuracy of the delay measurement of Flow
A.

By supplementarily utilize information of the other
flows, we can achieve a more accurate measurement while
maintaining the load of the probe flows in the entire system.
Large number of probe packets leads the increase of the load
of a network. We cannot limitlessly increase the probe rate
in order to improve accuracy. Therefore, it is essential to im-

Fig. 1 Parallel monitoring of multiple flows. The paths of Flow A and
B share Edge 1 and 2. If a delay is caused by Edge 2, similar delays are
observed in Flow A and B.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers
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prove accuracy of delay measurement without increasing the
number of probe packets since an accurate measurement is
a key technology of SLA validation as we mentioned above.

We have proposed a parallel flow monitoring method
in which delays on a flow are accurately measured by par-
tially converting the observation results of other flows into
the results of the flow [7]. In this method, congestion pe-
riods are taken from each observation result, and they are
divided into clusters for each common edge that causes a
large delay. Observation results of flows in a cluster are
converted between each other. A clustering technique in ma-
chine learning is utilized to divide them into clusters. The
method does not require any internal information of a mea-
sured network, including a topology, and it only uses the
delay of each flow. Note that the method does not assume
that all possible paths in a network are simultaneously moni-
tored. It can appropriately perform when only a part of paths
in a network are monitored. The method in Ref. [7] has as
many as 5 parameters: probe packet interval δ, delay thresh-
old xth, radius parameter r, the number e of initial clusters ,
and edge weight parameter β. Moreover, only for a part of
the parameters, the dependence of the performance on the
parameters is discussed in Ref. [7].

In this paper, we modify the parallel flow monitoring
method in order to reduce the number of the parameters,
and provide comprehensive evaluation of it. The proposed
method is independent from the number e of initial clus-
ters and edge weight parameter β. Evaluations regarding all
other parameters are provided to help parameter tuning in
practical measurements. Additionally, we verify the relation
between information volume and accuracy improvement.
The evaluation of the proposed method is based on simu-
lations, and we confirm that the proposed method achieves
accurate measurement of end-to-end delays in parallel mon-
itoring of probe flows.

The remainder of this paper is organized as follows.
Section 2 explains a network model and several assump-
tions of the proposed measurement method. In Sect. 3, we
summarize a conversion process for parallel flow monitoring
and show the algorithm of the proposed method. Section 4
explains end-to-end metrics for delay using results of the
proposed method. We evaluate the proposed method using
simulations in Sect. 5. Section 6 summarizes related works.
Finally, Sect. 7 concludes the paper and presents future re-
search directions.

2. Network Model and Assumptions

We are interested in measuring end-to-end delays in wired
packet networks. A network considered within the scope of
this work is represented by a directed graph. An edge of
a directed graph represents a physical/virtual link and inter-
faces at both ends of the link. Note that an interface includes
input/output packet queue. A vertex represents a part of a
network device other than its interfaces (e.g., a forwarding
element). A path is defined as a sequence of vertices and
edges. A packet is delivered from a source to a destination

along a path. Paths are stable in a measurement period (gen-
erally within several minutes) since paths are not changed
frequently.

Packets are delayed at vertices or edges on a path. An
end-to-end network delay experienced by a packet consists
of four elements: propagation delay, queueing delay, trans-
mission delay, and processing delay. Processing delay oc-
curs when a packet is on vertices. The other delays occur on
edges. In the modern Internet, propagation delay and queue-
ing delay are dominant, and transmission delay and process-
ing delay are negligible [8]. In this paper, we assume that
an end-to-end delay is consisted of propagation delay and
queueing delay. Propagation delay can be regarded as a con-
stant for a path while queueing delay dynamically changes
reflecting traffic status. Both delays experienced by a packet
on a single edge are assumed to be independent for a path
that the packet passes. We assume that edges with large
queueing delay are sparse among all edges in a network,
and a ratio of periods with large queueing delay on an edge
to the other periods is small. The validity of the assump-
tion can be confirmed since the average link utilization of
the modern Internet is maintained low [9]. Note that we do
not assume a congested edge is unique.

Network researchers or practitioners measure end-to-
end delay on each path. To measure delay on paths, probe
packets are periodically injected for all or a part of paths
on a network. A delay experienced by a probe packet can
be obtained from the values of timestamps recorded at the
source and the destination. Time synchronization of source
and destination devices is required if network researchers or
practitioners measure one-way delay. They do not need to
know the topology of a network. We first tackle develop-
ment of a measurement technique without the knowledge of
the network topology since it is more applicable, though the
proposed method may be improved by utilizing a network
topology. Development of a measurement technique with a
network topology is left for our future work.

3. Sample Conversion Technique Using Parallel Flow
Monitoring

3.1 Overlap of Queueing Delay Processes

In active measurement for delay of the modern Internet, it
is important to sample information regarding congestion pe-
riods with large delay since the ratio of the periods to the
other periods are extremely small. A delay experienced by
a probe packet of Flow A can be regarded as a sample of a
virtual delay process χA(t), which is the delay experienced
by a virtual packet injected from the source into the path of
Flow A at time t. We denote m samples by the probe pack-
ets of Flow A as XA = {(ti

A, x
i
A) ; i = 1, . . . ,m}, where ti

A
is the injection time of the ith probe packet of Flow A and
xi

A is the delay observed by the ith probe packet. Note that
xi

A corresponds to χA(ti
A). Since probe packets are injected

with constant interval, the number of probe packets injected
into a path within congestion periods are few. Although high
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quantile is a key metric for delay sensitive applications such
as VoIP, fewer probe packets within congestion periods lead
less accurate measurement for high quantile of end-to-end
delay.

Queueing delay processes within a congestion period
on multiple paths that have common edges often coincide
with each other. A virtual delay process χA(t) is the sum of
propagation delay χ̄A and queueing delay χ̂A(t). A conges-
tion period can be defined as a period where a large delay
is included in the period and a queueing delay is nonzero.
Queueing delay processes χ̂A(t) and χ̂B(t) tightly overlap if
the following three conditions are satisfied:

1) The two paths of Flow A and B have the same source;
2) Routes from the source to the last congested edge on

the paths are common like Flow A and B in Fig. 1;
3) A queueing delay that packets experience on edges af-

ter the last congested edge can be negligible.

When the above conditions 1) – 3) hold, we see the differ-
ence χA(t) − χB(t) is constant χ̄A − χ̄B in a congestion pe-
riod since χ̂A(t) = χ̂B(t). The overlap of queueing delay
processes is likely to occur when the sparsity of edges with
large queueing delay holds. Note that the proposed method
does not require the satisfaction of the above three condi-
tions for all congestion periods. If queueing delay processes
within a part of congestion periods satisfy the conditions,
the proposed method can work for these congestion periods.
Since we assume that edges with large queueing delay are
sparse among all edges, most (but not all) congestion peri-
ods approximately satisfy the conditions.

3.2 Conversion Process

If the queueing delay processes χ̂A(t) and χ̂B(t) tightly over-
lap, namely the above three conditions hold, samples of
these processes can be converted mutually as shown in
Fig. 3. It seems difficult to discriminate the conditions 2) and
3) without using topology and queue information, however
we will design a method that uses only information from
probe packets without the knowledge of topology.

First of all, we show how to detect congestion periods
from samples obtained by probe packets. We can estimate
the propagation delay χ̄A on a path of Flow A by the mini-
mum value x̄A ≡ min1≤i≤m xi

A since a delay is non-negative
and we assume a propagation delay is a constant. A conges-
tion period is observed as consecutive samples that are larger
than x̄A + xth, where the threshold xth is a control parameter
in the proposed method (See Fig. 2). The start time of the
jth congestion period is estimated as the jth injection time
among the injection times {ti

A ; xi−1
A < x̄A +xth and x̄A +xth ≤

xi
A}. The end times of the jth congestion period is also es-

timated as the jth injection time among the injection times
{ti

A ; x̄A + xth ≤ xi
A and xi+1

A < x̄A + xth}.
In the proposed method, when congestion periods of

two flows whose start and end times are respectively the
same, the samples within the congestion periods of each

Fig. 2 Estimation of congestion periods with samples. The threshold
x̄A + xth is used to estimate start and end times of a congestion period.

Fig. 3 A conversion process of two flows with congestion periods that
started and ended at the same time.

flow are mutually converted. If we can assume that the num-
ber of congested edges is at most one in the entire network,
i.e., strong sparsity of congested edges can be assumed,
paths with congestion periods that start and end at the same
time satisfy the conditions 2) and 3) shown in Sect. 3.1 (We
will relax the assumption later). We consider that samples
XA, j within the jth congestion period of Flow A and samples
XB,k within the kth congestion period of B can be converted
between each other if the two flows satisfy the following
conditions:

i) The two flows have the same source;
ii) The interval between the packet injection times of the

first samples in XA, j and XB,k is smaller than δ;
iii) The interval between the packet injection times of the

last samples in XA, j and XB,k is smaller than δ.

δ denotes the injection interval of probe packets, and, in
the above conditions, it is used to discriminate whether the
congestion periods of two flows start/end at the same time
(We assume that the injection intervals of all probe flows are
the same). Each sample (ti

B, x
i
B) in XB,k is converted into a

sample of Flow A by (ti
B, x

i
B − x̄B + x̄A), since propagation

delays of Flow A and B are different even if queueing delay
process are tightly overlap.

3.3 Conversion Process Based on Destination’s Time

Discussions similar to Sects. 3.1 and 3.2 can be applied
when we consider a virtual delay process ψA(t) based on
destination’s time, which is the delay experienced by a
packet that reaches the destination at time t. A queue-
ing delay process based on destination’s time is also de-
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fined by ψ̂A(t) = ψA(t) − χ̄A. χA(t) and ψA(t) can be
translated each other since χA(t) = ψA(t + χA(t)). We
also denote m samples of ψA(t) on the path of Flow A as
YA = {(ui

A, x
i
A); i = 1, . . . ,m}, where ui

A is the receive time
of the ith probe packet at the destination d, and xi

A is the
delay observed by the ith probe packet as we defined above.

The conditions for tightly overlapping queueing delay
processes ψ̂A(t) and ψ̂C(t) are as follows:

1) The two paths of Flow A and C have the same destina-
tion;

2) Routes from the first congested edge to the destination
on the paths are common like Flow A and C in Fig. 1;

3) A queueing delay that a packet experiences on edges
before the first congested edge can be negligible.

Similarly, by indicating samples within the jth conges-
tion period of Flow A as YA, j, the conditions for discriminat-
ing whether the congestion periods of two flows start/end at
the same time are as follows:

i) The two flows have the same destination;
ii) The interval between the packet receive times of the

first samples in YA, j and YC,k is smaller than δ;
iii) The interval between the packet receive times of the

last samples in YA, j and YC,k is smaller than δ.

Samples within congestion periods that satisfy the
above conditions i) – iii) are mutually converted. The con-
verted samples of ψA(t) are translated into samples of χA(t)
by the equation χA(t) = ψA(t + χA(t)).

3.4 Clustering Process

If multiple edges are congested at the same time, the con-
version process we shown in Sects. 3.2 and 3.3 may convert
inappropriate samples. The samples within congestion peri-
ods should have the same start and end time are converted
in the conversion process. As we mentioned above, the con-
ditions for discriminating whether the congestion periods of
two flows start/end at the same time are different from these
for tightly overlapping queueing delay processes (the former
is shown in Sect. 3.2 and the latter is shown in Sect. 3.1).
Therefore, even if we convert samples based on the condi-
tions shown in Sect. 3.2, the queueing delay processes be-
hind the samples do not necessarily overlap.

For instance, in Fig. 1, if a congestion period caused by
Edge 3 starts and ends within a congestion period caused by
Edge 2, we should not convert the samples of Flow B into
those of Flow A (see Fig. 4). In this case, since the virtual
queueing delay processes for Flow A and C tightly overlap,
we can convert the samples of Flow C into those of Flow
A. However, the virtual queueing delay processes for Flow
A and B do not overlap since packets of Flow B do not ex-
perience a delay caused by Edge 3. The conversion process
described in the previous sections converts the samples of
Flow B into those of Flow A. Hence, we should not convert
these inappropriate samples from samples of Flow A.

Fig. 4 A case of multiple congested edges.

To remove inappropriate samples, we utilize a cluster-
ing technique in machine learning [10]. Based on samples
that are converted, we construct clusters of flows using a
clustering technique. In the example of Fig. 4, Flow A and
C should be in a cluster, and Flow B should be in another
cluster.

Since the number of samples and their intervals vary,
we transform samples of each flow into vectors with the
same dimension to use general clustering techniques. We
let XB,k

A, j denote the set of the converted samples from the kth
congestion period of Flow B into samples of the jth con-
gestion period of Flow A. Let FA, j be the set of sample sets
that are added to the jth congestion period of Flow A, i.e.,
FA, j = {XA, j, X

B,k
A, j , X

C,l
A, j, . . . }. FA, j denotes the set of all sam-

ples
⋃

f∈FA, j
f in FA, j. First, we construct a directed graph

with vertices {(tf − δ, x̄A), (tl + δ, x̄A)}∪FA, j for each conges-
tion period, where tf and tl denote the first and last injection
times in XA, j. In the graph, edges from a vertex (ti

A, x
i
A) are

toward all vertices with injection times that are larger than
ti
A. The cost of the edge from (ti

A, x
i
A) to (t j

B, x
j
B) is set to

1√
1
δ2 (ti

A − t j
B)2 + 1∑

xi
A∈XA, j

|xi
A−xi−1

A |/|XA, j |
(xi

A − x j
B)2

. (1)

In Ref. [7], the cost of the edge is defined as a function of
parameter β. Parameter β balances the scale of vertical and
horizontal axes in Fig. 5. It is reported that the accuracy of
the end-to-end delay measurement may degrade markedly
depending on a value of β. In Eq. (1), ti

A − t j
B is normalized

by probe packet interval δ, and xi
A − x j

B is also normalized
by the mean intervals of xi

A, thereby it does not include pa-
rameter β. For each flow, we search a path from the vertex
with the earliest injection time to the vertex with the last
injection time via all vertices of the flow (see Fig. 5). The
path between vertices of the flow are a solution of the widest
path problem (WPP) [11]. In the case of Fig. 5, by solving
the problem 9 times for 9 intervals of 10 vertices of Flow
A, the first vertex is connected to the last vertex via all ver-
tices of Flow A. Next, for each flow, we transform the path
into an n-dimensional vector by making the vertices evenly
spaced. The lth element of the vector is a queueing delay
when the injection time is ((l − 1)(tl − tf))/(n − 1) on the
path, where n denotes the product of the number |XA, j| of
original samples and multiplicity |FA, j| of flows. Through
the above process, we can express the samples of each flow
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Fig. 5 Solutions of the widest path problem for Flow A.

as an n-dimensional vector.
The proposed method constructs clusters of n-

dimensional vectors that represent samples of each flow, and
samples that are converted from flows of the different clus-
ters are removed. Prior work on clustering techniques has
left us with a rich collection of literature [10]. Among these
techniques, we can utilize the techniques that are able to
handle high-dimensional vectors and do not have the prede-
fined number of clusters as an input parameter (e.g., DEN-
CLUE [12], G-Means [13], Minimum Entropy Clustering
(MEC) [14], etc.). Unfortunately, it is difficult to appropri-
ately divide clusters of flows when the number of samples
of each flow is extremely small. When the number of sam-
ples in the congestion period per flow is at most 1, the con-
verted samples are removed in the proposed method before
the clustering process.

The pseudo code of the clustering process for the jth
congestion period of Flow A is shown in Algorithm 1. In
the pseudo code, we apply MEC clustering to our clustering
process though we can apply various clustering techniques
as we mentioned above. First, a path P from (tf − δ, x̄A) to
(tl + δ, x̄A) via all samples in XA, j is calculated by solving
WPP (Lines 3-6). Based on a path P, n-dimensional vector
uX is calculated, and uX is added to V (Lines 7-11). In our
method, we give |XA, j| · |FA, j| as n. MEC clustering divides
the set of vectors V related to sample sets into clusters (Lines
12-19). In MEC clustering, samples are divided into e clus-
ters by k-means clustering, and it reassigns samples into an-
other cluster in order to minimize an entropy criterion. The
number e of initial clusters is a parameter in MEC, and the
number of clusters can be reduced by reassigning samples
into another cluster. In our method, we achieve to reduce
the number of parameters by dynamically setting e to |V | for
each congestion period. Lastly, samples that are assigned
to all clusters except for the cluster of uXA, j related to the
original samples are removed (Line 20).

3.5 Scalability

In this section, we will discuss the scalability of the pro-
posed method. In the conversion process, the proposed
method checks whether the start and end times of any pair
of congestion periods are respectively the same. The com-
putational complexity of the process is O(N2M2), where N
denotes the number of flows and M denotes the maximum
number of congestion periods of a flow. The actual con-
verting of samples requires O(NML) operations, where L

Algorithm 1: The pseudocode of the clustering pro-
cess for the jth congestion period of Flow A

Input: FA, j = {XA, j, XB,k
A, j , X

C,l
A, j, . . . }, δ, X̄A, n

1 V ← ∅
2 foreach X ∈ FA, j do
3 P← [ ]
4 X′ ← {(tf − δ, x̄A)} ∪ X ∪ {(tl + δ, x̄A)}
5 foreach adjacent sample pair (s, s′) in X′ do
6 push the solution of WPP from s′ to s into P

7 for l← 1 to n do
8 t = ((l − 1)(tl − tf))/(n − 1)
9 find (t, x) on a line from P[i] to P[i + 1]

10 (lth element of vactor uX)← x

11 V ← V ∪ {uX}

12 construct initial |FA, j| clusters by k-means algorithm
13 repeat
14 foreach u ∈ V do
15 c← cluster containing most of u’s neighbors
16 if c is not current cluster cu of u then
17 if entoropy h is reduced when u is in c then
18 asign u to c

19 until no change;
20 remove samples not related to vectors in cluster of uXA, j

denotes the maximum number of samples in a congestion
period (i.e., L = maxA, j |FA, j|). On the other hand, in the
clustering process, the computational complexity of com-
posing n-dimensional vectors are O(L3K3), where K de-
notes the maximum number of flows in an edge. Therefore,
the computational complexity of the proposed method other
than MEC clustering is O(N2M2 + NML + L3K3). The aver-
age time complexity of each iteration in MEC is usually less
than O(K), and the number of iterations is usually less than
20 when K = 800 (K in our experience shown in Sect. 5 is
quite smaller than 800) [14].

3.6 Limitations

As with all other measurement methods, the proposed
method has limitations. This section discusses cases where
the proposed method cannot improve accuracy by convert-
ing samples (see Fig. 6).

• Momentary congestion: The proposal method cannot
improve accuracy by converting samples in very short
congestion periods. Basically, momentary congestion
is hard to detect since the number of probe packets that
are included in the period is small. If there is no sam-
ple of a flow in the period, samples of the other flows
cannot be converted into the samples of the flow. Even
if the congestion is detected fortunately, the proposed
method does not convert the samples intentionally, as
mentioned in Sect. 3.4.

• Non-sparse congestion: We have assumed sparsity of
congested edges in Sect. 2. If congested edges are not
sparse, i.e., queueing delays are always high on most
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Fig. 6 Cases where the proposed method cannot improve accuracy by
converting samples.

edges, the proposed method cannot detect start and end
times of a congestion period. Even if the start and end
times are detected, it is hard to divide clusters in the
clustering process since queueing delay processes are
different for each flow and they are not overlapped.

• Complex routes: The proposed method cannot convert
samples between flows that are once forked and re-
joined. The condition 2) in Sect. 3.1 for overlapping
queueing delay processes requires that the paths are
completely common from the source to the last con-
gested edge. Since flows that are once forked and re-
joined violate the condition, samples in a congestion
period that occurs on an edge after a rejoin cannot be
converted between each other. Of course, a manager
of a measurement may not know the existence of such
flows since we do not assume the knowledge of the net-
work topology. Even if the manager does not know
the topology, the samples in such flows are not con-
verted each other due to difference of propagation de-
lay. Hence, the performance of the proposed method
will not be worse than that of the conventional method,
though accuracy improvement is not expected by con-
versions of samples between such flows.

Since the proposed method cannot convert samples in the
above three cases, the result approaches to that of the con-
ventional method. The limitations do not mean that the pro-
posed method can be inaccurate compared with the conven-
tional method.

4. End-to-End Metrics for Parallel Flow Monitoring

The proposed method increases the number of samples of a
virtual delay process, and these samples can be utilized for
various metrics regarding end-to-end delay. Most of mea-
surement approaches based on active measurements can be
jointly used with the proposed method since the proposed
method simply adds samples in active measurements. The
samples by the proposed method is not uniformly distributed
in the time space since samples are added in congestion pe-
riods. Hence, it is needed to weight samples depending on
multiplicity of flows. In this section, we give examples of
mean delay and q-quantile measurement.

The conventional estimators [2] for end-to-end delay

are defined as follows. The mean delay is defined as the
arithmetic mean of delay ds of a sample s,

1
|XA|

∑
s∈XA

ds.

Recall that XA is the set of original samples, as we defined
in Sect. 3.1. For q-quantile of end-to-end delay,

k = arg max
j
{ j ≤ q|XA|} = bq|XA|c, (2)

is calculated, and q-quantile is estimated by the kth smallest
delay among all samples XA.

Our estimators are natural extensions of the conven-
tional estimators. A weight of a sample is determined by
multiplicity of flows in the congestion period that contains
the sample. The weight of sample s is given as follows:

ws =


|XA, j|

|FA, j|
s ∈ FA, j ( j = 1, 2, . . . ),

1 otherwise.

Recall that FA, j is the set of the all samples including con-
verted samples in jth congestion period of Flow A, and XA, j
is the set of samples of Flow A in the jth congestion period
(the definitions are given in Sect. 3.2 and 3.4).

ws represents the ratio of the number of all samples in
congestion period j to the number of the original samples in
the period.

If we want to measure the mean delay on the path of
Flow A, it is measured by

1
|XA|

∑
s∈XA∪FA,∗

wsds,

where FA,∗ denotes all samples
⋃

j FA, j in all congestion pe-
riods. For q-quantile measurement, we first calculate the
following:

k = arg max
j

 j∑
i=1

wsi ≤ q|XA|

 ,
where si denotes the sample whose delay is the ith smallest
among all samples XA∪FA,∗. Then, q-quantile of end-to-end
delay is estimated by the kth smallest delay.

5. Experiments

5.1 Simulation Settings

We perform NS-3 [15] simulations to confirm that sam-
ples of parallel flows of active measurement are appropri-
ately converted between each other in the proposed method.
The topology in our simulations that is shown in Fig. 7 re-
sembles Internet2 topology [16]. There are 9 nodes, and
they are connected by physical links whose capacity are
15.552 [Mbps]. The numerical values written beside the
links in the Fig. 7 indicate propagation delay, and we set
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Fig. 7 A simulation topology. The numerical values beside the links in-
dicate propagation delays in ms.

Table 1 Types of traffic in our simulation.

Stationary Packet size 600 [Byte]
Traffic pattern Poisson arrivals

Traffic intensity 388.8 [Kbps]
(4% of a link capacity)

Bursty Packet size 500 [Byte]
Traffic pattern On/off process with periodic

arrivals in bursty periods
Traffic intensity 8,000 [Kbps] in bursty periods

0 [bps] in idle periods
Bursty period Exponential distribution

with mean 0.1 [s]
Idle period Exponential distribution

with mean 4.0 [s]
Probe Packet size 74 [Byte]

Traffic pattern Periodic arrivals
Packet intervals δ 200 [ms]

them proportional to the distance between the nodes in In-
ternet2.

The traffic in our simulation is categorized into 3 types
that are listed in Table 1. These 3 types of traffic stream
between all pairs of 9 nodes (i.e. 9 × 8 = 72 probe flows
in the entire network). Phases of packet injection are ran-
domized while probe packets are injected periodically. The
probe packets are commonly used for the proposed method
and the conventional method. The estimators explained in
Sect. 4 are used for each method. Since the link capacity is
uniformly 15.552 [Mbps], traffic intensity on a link tempo-
rally exceeds the link capacity if two or more flows of bursty
traffic are joined at the link. Though the congested links are
sparse, congestions on multiple links can occur at the same
time. Since the maximum queue size is set significantly
large, a buffer overflow does not occur though this temporal
capacity shortage causes queueing delays. The simulation
time is 42 [s] and we only use the data from 20 [s] to 42 [s].

The parameters of the proposed method are set as fol-
lows. The threshold xth is set to 0.01 [s]. We use MEC
for clustering, and its radius parameter r is set to 0.1. Al-
though we have tried using DENCLUE and G-Means, the
same result as that of the conventional method is obtained
since all flows are divided into different clusters. This is be-
cause DENCLUE cannot appropriately estimate the density
of data due to the small number of flows. On the other hand,
G-Means assumes that Gaussian distribution of data, though
our data do not follow Gaussian distribution.

Fig. 8 Samples of the proposed method and the conventional method.

5.2 Accuracy Improvement of the Proposed Method

To confirm that the proposed method appropriately converts
samples of the other flows into those of a flow, we depict
examples of samples by the conventional and the proposed
method in Fig. 8. The examples shown in Fig. 8 are the sam-
ples of Flow ID 5-3 and 6-4. Flow ID s-d is composed of
source s and destination d of the flow. In the figure, we only
depict a period (from 37.0 [s] to 41.0 [s] for Flow ID 5-3
and from 20.0 [s] to 22.0 [s] for Flow ID 6-4) when one of
large delays is observed. We can confirm that the number
of samples of the proposed method is larger than those of
the conventional method, and the samples tightly approxi-
mate the virtual delay. The few samples of the conventional
method can approximate the virtual delay. However, the
proposed method can capture the change of the virtual delay
in more detail by a large number of the samples. Therefore,
the proposed method is expected that the metrics regarding
the distribution of the virtual delay such as q-percentile can
be accurately measured. Removed samples in the clustering
process are indicated by the green plus marker, and most of
them are not on the virtual delay. Hence, it is confirmed that
the clustering process removed inappropriate samples.

We also evaluate the accuracy of the proposed method
when the 99th-percentile of end-to-end delay is measured.
The simulation is repeated 10 times by changing the phase
of the probe packet injection time. The true value of 99th-
percentile is displayed in Fig. 9 (Top), and the number of
the converted samples is displayed in Fig. 9 (Middle). We
display only flows whose 99th-percentile of delay exceeds
100 [ms]. The number of original samples that are obtained
from probe packets is 110 samples, and they are not included
in Fig. 9 (Middle). Similarly, the samples that are removed
in the clustering process are not included in the figure. Up
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Fig. 9 (Top) The true values of 99th-percentile of delay. (Middle) The
number of the converted samples. (Bottom) RMSE of the 99th-percentile
measurement for each flow.

to 51 samples are converted into samples of a flow. Root
Mean Squared Errors (RMSE) of 99th-percentile measure-
ment of end-to-end delay are calculated, and the result is
shown in Fig. 9 (Bottom). The error bars represent 95% con-
fidence intervals. The proposed method provides up to 86%
reduction of RMSE (the maximum reduction rate for flows
is achieved at Flow ID 1-4). Additionally, the RMSE re-
duction rate of the worst flow is reduced by 25% (The ratio
of RMSE of Flow ID 0-7 in the proposed method to that of
Flow ID 5-3 in the conventional method). Compared with
the conventional method, higher of nearly equivalent accu-
racy is achieved for most of the flows.

We also verified the estimators of q-quantile, for vari-
ous q. For q > 0.82, we got similar results with the above re-
sults for q = 0.99, and the proposed method corresponds to
the conventional method when q ≤ 0.82. As we mentioned
in the introduction, high-quantile estimation for end-to-end
delay is important though it is hard to measure. From the re-
sults, the proposed method achieves good performance for a
high-quantile estimation that we are interested in.

5.3 Dependency of Accuracy on a Probe Packet Interval

To verify the effect of probe packet interval δ on the per-
formance of the proposed method, we compare RMSE of
99th-percentile of end-to-end delay by changing δ from 0.1
to 0.8 [s]. The other simulation settings except for the probe
packet intervals are unchanged from the settings shown in
Table 1. The results for flows whose 99th-percentile of delay
exceeds 100 [ms] are shown in Fig. 10. It is confirmed that
the proposed method outperforms the conventional method
for most of δ values. The result of the average reduction rate
of RMSE means that the proposed method achieves double
accuracy without increasing the number of probe packets.

5.4 Dependency of Accuracy on a Parameter of MEC

Next, we will confirm the dependency of RMSE on the pa-

Fig. 10 Dependency of RMSE on probe packet intervals δ. The proposed
method significantly reduces the values of RMSE.

Fig. 11 Dependency of RMSE on radius parameter r of MEC. The re-
duction rate of RMSE is remarkable for r from 0.00001 to 0.1.

rameter of MEC. By changing the parameter r, we calculate
the maximum RMSE reduction rate for flows, the RMSE
reduction rate of the worst flow, and the average reduction
rate of RMSE for flows whose 99th-percentile of delay ex-
ceeds 100 [ms]. The probe packet intervals δ is set to 0.2 [s],
and the other parameters except for radius parameter r is not
changed from the first experiment whose results are shown
in Fig. 9 in this section. The results when we change r from
10−5 to 1.0 are shown in Fig. 11. We can confirm that the
proposed method achieves good performance for 10−5 to
10−1.

5.5 Dependency of Accuracy on a Parameter of Delay
Threshold

In order to verify the dependency of the threshold xth on the
performance of the proposed method, we compare RMSE of
99th-percentile of end-to-end delay by changing the thresh-
old xth from 0.001 to 1.0. The other simulation settings ex-
cept for the threshold are unchanged from the settings shown
in Table 1. The results for flows whose 99th-percentile of
delay exceeds 100 [ms] are shown in Fig. 12. We can con-
firm that the reduction rate converges to 0 and the proposed
method corresponds to the conventional method when the
threshold becomes a large value. The maximum queue-
ing delay is 317 [ms] in our simulation, and the proposed
method works effectively if the threshold xth is smaller than
the maximum queueing delay. Roughly, one-hundredth of
the expected maximum queueing delay is recommended as
xth since the reduction rate for xth ≤ 0.01 is stable in Fig. 12.

5.6 Effect of a Edge Weight Parameter

We compare the proposed method that is independent from
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Fig. 12 Dependency of RMSE on threshold parameter xth.

Fig. 13 Effect of edge weight parameter β for radius parameter r = 0.1.

Fig. 14 Effect of edge weight parameter β for radius parameter r =

0.001.

edge weight parameter βwith the method in Ref. [7]. One of
the remaining issue of Ref. [7] is that the performance of the
end-to-end measurement highly depends on edge weight pa-
rameter β, and it does not include how to tune the parameter.
The reduction rate of 99th-percentile based on the conven-
tional method is compared between the proposed method
and the method in Ref. [7] when β is varied. The num-
ber e of initial clusters in the method in Ref. [7] is set to
10. We perform the simulation for r = 0.1 and 0.001.
The other simulation settings except for the radius param-
eter r, e, and β are unchanged from the settings shown in
Table 1. The results for r = 0.1 and r = 0.001 are shown
in Figs. 13 and 14, respectively. Unfortunately, the pro-
posed method cannot achieve equivalent performance with
the best performance of the method in Ref. [7] with the best
parameter (β = 0.32) since the automatic parameter tuning
in the proposed method is not functioning perfectly. How-

Fig. 15 Effect of the number e of initial clusters.

ever, we can confirm that the proposed method can avoid the
marked degradation of the performance, though the method
in Ref. [7] is often close to the conventional method when β
is too high/low.

5.7 Effect of the Number of Initial Clusters

We compare the proposed method that is independent from
the number e of initial clusters with the method in Ref. [7].
The reduction rate of 99th-percentile based on the conven-
tional method is compared between the proposed method
and the method in Ref. [7] when e is varied. Parameter β
in the method in Ref. [7] is set to 0.16. The other simu-
lation settings except for the radius parameter e and β are
unchanged from the settings shown in Table 1. The results
are shown in Fig. 15, and we can confirm that the results
are unchanged unless e is set to 1. e = 1 means that vec-
tors are not divided into clusters in the clustering process,
and that is an unreasonable value for the initial number of
clusters. Since the parameter β is tuned to a suitable value,
the method in Ref. [7] shows better performance than the
proposed method. However, we can confirm that the pro-
posed method can avoid the marked degradation of the per-
formance like the method in Ref. [7] with e = 1.

5.8 The Relation between Information Volume and Accu-
racy Improvement

Finally, we verify the relation between information volume
and accuracy improvement of the proposed method. As we
mentioned above, since we assume that multiple probe flows
are monitored to measure delays on multiple paths in paral-
lel, the available information for both of the conventional
and proposed methods is information about the all probe
flows that stream on the network (they are 72 probe flows
in the experiments of this section). From the aspect of the
entire measurement system, the information that can be ac-
cessed by both methods is the same. However, the proposed
method fully utilizes information that is included in these
flows by converting samples of other flows. In the first ex-
periment of this section, information about 110×72 = 7, 920
samples are available. The conventional method utilizes 110
samples among 7,920 samples for an estimation of a flow,
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Fig. 16 The relation of increase rate of information volume and rate of
accuracy improvement for each flow.

but the proposed method utilizes 110 to 188 samples. We
consider the relation of the increase rate of information vol-
ume and the rate of accuracy improvement for each flow in
order to confirm the efficiency of the conversion. The in-
crease rate of information volume is defined by the ratio of
the number of utilized samples in the proposed method to
that of the conventional method. The rate of accuracy im-
provement is defined by (1/rp)/(1/rc) where rp and rc are
RMSE of the proposed and conventional methods, respec-
tively.

The scatter diagram that represents the relation of them
is shown in Fig. 16, and we add a line x = y on the diagram.
It is preferable that the points are plotted under the line. The
result shows that large accuracy improvement is achieved
for the many flows compared to the increase of information
volumes since 2/3 points are plotted under the line. This
is because the proposed method utilizes information about
samples in congestion periods that are important for estima-
tions.

6. Related Works

There is a rich collection of literature that aims at measur-
ing end-to-end delays [1], [2], [5], [17]–[19]. Some prior
works [1], [2] have tried to estimate high quantile of end-to-
end delays by active measurement. Choi et al. [1] has pro-
posed a scheme that estimates high quantile with bounded
errors. The scheme allows us to know the minimum number
of probe packets needed to bound the error of quantile esti-
mation within a prescribed accuracy. Sommers et al. [2] also
have proposed an estimator of high quantile. Since the esti-
mator provides confidence intervals, we can tune the number
of probe packets to achieve the required accuracy. Unlike
our proposed method, these prior works utilize only a single
flow for an end-to-end delay on a path.

The effect of probe packets on the path quality have
been also studied [4], [5], [20]–[22]. References [20], [21]
have shown that an arrival process of the probe pack-
ets affects accuracy of end-to-end delay/loss measurement.
Degradation of measurement accuracy caused by probe traf-
fic load have been studied in Refs. [4], [5], [22]. The limi-
tation of a single flow measurement can be understood by
these works.

7. Conclusion

In this paper, we proposed a parallel flow monitoring

method that achieves accurate measurement by partially
converting the observation results each other. The pro-
posed method adds to samples of a flow from the samples
of the other flows, and removes inappropriate samples us-
ing a clustering technique based on machine learning. We
demonstrated that the proposed method can properly add
and remove samples through simulations. When the 99th-
percentile of end-to-end delay is measured, the proposed
method achieves double accuracy comparing with the con-
ventional method.

In future work, we will evaluate our method using real
network traffic. Additionally, we will develop a method that
utilizes a network topology for the conversion process. By
using the knowledge of the topology, the samples that are
not added in the proposed method can be added. Moreover,
our method can be extended to loss measurement.
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