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PAPER
Measuring Lost Packets with Minimum Counters
in Traffic Matrix Estimation∗

Kohei WATABE†a), Member, Toru MANO††, Nonmember, Takeru INOUE††, Kimihiro MIZUTANI††,
Osamu AKASHI††, and Kenji NAKAGAWA†, Members

SUMMARY Traffic matrix (TM) estimation has been extensively stud-
ied for decades. Although conventional estimation techniques assume that
traffic volumes are unchanged between origins and destinations, packets
are often lost on a path due to traffic burstiness, silent failures, etc. Count-
ing every path at every link, we could easily get the traffic volumes with
their change, but this approach significantly increases the measurement cost
since counters are usually implemented using expensive memory structures
like a SRAM. This paper proposes a mathematical model to estimate TMs
including volume changes. The method is established on a Boolean fault
localization technique; the technique requires fewer counters as it simply
determines whether each link is lossy. This paper extends the Boolean
technique so as to deal with traffic volumes with error bounds that requires
only a few counters. In our method, the estimation errors can be controlled
through parameter settings, while the minimum-cost counter placement is
determined with submodular optimization. Numerical experiments are con-
ducted with real network datasets to evaluate our method.
key words: traffic matrix, packet drop, submodular optimization, failure
localization, passive measurement

1. Introduction

Traffic Matrices (TMs), which specify the traffic volumes
between origin-destination pairs in a network, are used by
many network engineering tasks, such as traffic engineer-
ing [1], [2], capacity planning [3], and anomaly detec-
tion [4]. These tasks rely heavily on the availability and
accuracy of TMs. Due to their importance, there has been a
substantial body of work on TM estimation [5]–[11]. Con-
ventional TM estimation techniques assume the strict flow
conservation, i.e., traffic volumes are unchanged along a
path from the origin to the destination. Traffic, however,
can be lost due to packet drops in a network. For example,
bursty traffic could be dropped by the overflow of a switch’s
queue, even if the long-term average throughput is lower
than the link capacity; silent packet drops [12] often hap-
pen, i.e., switches for unknown reasons drop packets with-
out showing information about the drops.

This paper studies a mathematical model to estimate
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Fig. 1 (Left) Traffic volumes with change. There are three links, e1, e2,
and e3, and two paths, P1 and P2, in the network. The volumes are in-
dicated by the arrow width. (Right) Identification of failed link with a
Boolean measurement matrix. The rank of this matrix (m = 2) is lower
than the number of variables (n = 3), but we can obtain the solution x
for any y, assuming a single link failure; e.g., for y = (0 1)T , we have
x = (0 0 1)T .

TMs with lost packets as shown in Fig. 1(Left). What we
want to estimate in this study differs from the traditional
traffic matrix. Whereas the volume of traffic on each path is
estimated in traditional traffic matrix estimation, our method
estimates where and how much traffic on each path was
lost/passed. Of course, counting every path at every link,
we could easily get the traffic volumes with their change.
The counters are, however, usually maintained on an expen-
sive memory like a SRAM to match to the speed of broad-
band links, so the number of counters should be minimized
to reduce the measurement cost. This paper specifically dis-
cusses the tradeoff between the measurement cost and esti-
mation errors. There are two baseline approaches; one is the
linear algebra approach which determines an upper bound
for the number of counters, while the other is Boolean alge-
bra approach which gives a lower bound.
Linear algebra approach. For the upper bound, we come
up with a naive combination of TMs with link loss-ratio es-
timation, as follows. Let m be the number of paths and n be
the number of links. Let T be an m ×m traffic matrix where
element tii is a traffic volume of i-th path (i = 1, 2, . . . ,m)
and the other elements are zero, let A be an m × n mea-
surement matrix where element ai j indicates whether i-th
path includes j-th link ( j = 1, 2, . . . , n), let x be an n-
dimensional column vector whose j-th element is the packet
loss ratio on j-th link, and let y be an m-dimensional column
vector whose i-th element indicates volume of lost traffic
on i-th path (i.e., the difference of traffic volume between
the ingress and the egress on the path). Here, T and y
are measured using counters placed at ingress and egress
switches, while A is determined from forwarding configu-
rations. Given T , A, and y, equation T Ax = y can be
uniquely solved for x if T A satisfies rank(T A) = n ≤ m.
This approach can exactly determine the traffic volumes
with change, but it requires a full-rank matrix as T A; if T A is

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers
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rank deficient, some paths have to be divided at intermediate
switches and another counters would be put on them.
Boolean algebra approach. This approach requires fewer
counters, but it only locates failed links without volume
change. Instead of T A used in the above approach, we
utilize the Boolean measurement matrix A with another
Boolean vectors x and y, where jth element x j of x indi-
cates whether j-th link is failed while ith element yi of y
indicates whether i-th path is failed. Note that the norm of
x, ||x||, indicates the number of failed links. Boolean matri-
ces have an interesting property: given K ∈ N, there exists
a rank deficient Boolean matrix A that yields an injective
mapping, x 7→ Ax, if ||x|| ≤ K (i.e., for sparse x) [13], [14].
This property allows us to uniquely determine x from y sub-
ject to Ax = y though m < n. This is because, roughly
speaking, the Boolean space restricted by K can be small
enough to be covered by a rank deficient matrix. There-
fore, at the expense of knowledge of volume change, this
approach reduces the number of counters since smaller m
leads to a smaller number of counters. In Fig. 1(Right), we
measure only two paths for the three links, but failed links
are identifiable assuming a single link failure (K = 1).

Our method proposed in this paper intervenes between
the two approaches; the volume change is estimated with
error bounds, while it requires counters fewer than the linear
algebra approach and close to the Boolean algebra approach.
Since exact volumes are usually not needed if their errors are
bounded, this is a good tradeoff. Our method is designed as
a passive scheme, which does not disrupt production traffic.
Our contributions are summarized as follows.

• A new theory about the measurability of packet/byte
counts is established (our theory handles both packet
counts and byte counts in a same way, so we only ad-
dress packet counts in the rest of paper). The TM esti-
mation is reformulated for packet drops with Boolean
algebra. The error bounds can be controlled by thresh-
old parameters.

• Our optimization method that minimizes the number of
counters is developed based on the measurability the-
ory. The counter placement problem is relaxed to a
submodular optimization problem, and an approxima-
tion algorithm is presented.

• Experiments with three real network datasets show that
the size of the measurement matrix in our method is
close to that of the Boolean algebra approach. Addi-
tionally, it is confirmed that the accuracy of our method
is highly guaranteed with tight error bounds for these
datasets.

The remainder of this paper is organized as follows.
Section 2 clarifies the problem of conventional TM esti-
mation techniques. Section 3 gives the problem state-
ment. Section 4 discusses our method based on “per-path”
measurement, while Sect. 5 unifies some measurement paths
into a tree (some rows are merged into a single row in the
matrix), thereby the number of counters is further decreased.
After describing practical modeling issues in Sect. 6, Sect. 7

shows experimental results. Section 8 summarizes related
work and Sect. 9 concludes the paper.

2. Conventional TM Estimation Techniques

First of all, we make the problem of conventional TM esti-
mation techniques clear. To evaluate conventional TM es-
timation techniques under packet drops, we conducted pre-
liminary experiments using Sparsity Regularized Singular
Value Decomposition (SRSVD) [9]. Figure 1(Left) shows
the network used in the experiments. We assume that path
P1 has 10× more traffic than P2. Packets are counted at
nodes o1, d1, and d2, and traffic volumes are estimated for
each path using the packet counts. Without packet drops, the
estimation is very accurate. However, with packet drops, it
is not; e.g., if 10% of traffic on link e1 drops, estimated vol-
umes are in error by up to 40% on P2, since the estimators do
not distinguish volumes on e1 and e3. These large errors are
also inevitable in other conventional estimation techniques,
which assume the strict flow conservation. These large esti-
mation errors are, unfortunately, considered to be unaccept-
able for most applications. Accurate TMs including volume
changes, i.e., where and how much packets are dropped on
the path, would be very useful for advanced network engi-
neering; e.g., capacity planning could consider lost traffic in
addition to the volume, while traffic engineering could avoid
lossy links and switches.

3. Model and Problem

3.1 Network Model

A network is represented by a directed graph, G = (V, E)
where V and E represent a set of vertexes and arcs. Given
a packet, the forwarding path is determined by the packet
header (e.g., addresses and ports) based on routing protocols
and/or switch configurations. A path along which there exist
some packets forwarded is called a feasible path P ∈ P,
where P is the set of feasible paths in the network. A path
is regarded as a set of arcs†. We do not consider multi-path
forwarding nor multicasting.

Let C be a set of counters placed in the network. A
counter is placed at the tail of directed arc e j ∈ E ( j =

1, 2, . . . , n) and maintains the number of packets transmitted
into the arc along the associated path (or the set of associated
paths, which forms a tree). Each counter is specified by the
pair of arc and path, e.g., (e j, P) ∈ C and C ⊆ C̃ = E×P, and
the value of the counter is denoted by κ j. Packets are clas-
sified to the corresponding counters based on their path us-
ing path-oriented packet classification techniques [15], [16].
Counter clocks are supposed to be synchronized [17], [18].
We assume that all packets are observed without sampling
some of them; our method could be extended to a sampling
version using hash functions [19]. We assume that packets

†The word “arc”, e ∈ E, is used as an abstraction of transmis-
sion media in this paper, since arcs will be used for links as well as
switch internals, as will be described in Sect. 6.
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Table 1 Notation table.

NotationDefinition

G A directed graph (V, E) that represent a network. V and E represent a set of
vertexes and arcs.

P A feasible path: a path along which there exist some packets forwarded.
P The set of feasible paths in the network.
e j An arc.
ea An abnormal arc.

(e j, P) A counter placed at arc e j on path P.
C A set of counters placed in the network.
C̃ The set of all potential counters E × P.
C0 The set of ingress counters in the network.
X A set of additional counters C \C0.
X0 An intermediate counter set assuming ε = 0.

XALG A counter set that outputted by Algorithm 3.
X∗ The optimal counter set of (10) for given thresholds ε and δ.
X∗0 The optimal counter set of (10) for given thresholds ε = 0.
κ j The value of the counter e j.
τ j The number of packets transmitted into e j along P in a measurement period.
τ̂ j An estimated value of τ j.
` j The packet loss ratio through arc e j.
φ An estimator of the pass ratio on the abnormal arc.
ε The threshold of loss ratio for a normal state. Loss ratio of a normal state arc

is smaller than ε.
δ The threshold of loss ratio for an abnormal state. Loss ratio of a abnormal

state arc is larger than δ. It also used as a loss threshold for a separable path.
d The maximum path length max{|P| : P ∈ P}.
Qi A separable subpath: a part of a feasible path between a pair of counters that

satisfies (1 − δ) < (1 − ε)k− j (see Fig. 2).
A(C) A measurement matrix whose (i, j) element ai j indicates that a separable path

Qi includes an arc e j (see (4)).
a j The j-th column vector of a measurement matrix A(C).
x A n-dimensional column vector whose j-th element indicates that j-th arc is

an abnormal state.
y A m-dimensional column vector whose i-th element indicates that subpath Qi

includes an abnormal arc.
x∗ The unique solution of Ax = y.
g A coverage function that represents how close the measurement matrix is to

1-independent.
g0 A coverage function for ε = 0.

H(x) x-th harmonic number
∑x

i=1 1/i.

are not fragmented in a network.
The packet loss ratio is defined by ratio of lost packets

to input packet of an arc, and the packet loss ratio through
arc e j is denoted by ` j ∈ [0, 1]. We assume that every arc
has either a normal state ` j ≤ ε or an abnormal state ` j ≥ δ,
where ε < δ; it is worth noting that our model works without
the strong assumption, ε � δ, used in [14]. We assume
that every path observes the equal loss ratio for the same
abnormal arc; e.g., in Fig. 1, if arc e1 were abnormal and the
other arcs were loss-less, the both paths (P1 and P2) would
experience the equal loss ratio. For the sake of simplicity,
this paper assumes a single arc failure, i.e., K = 1. However,
our theory could be easily extended for multiple failures.
Packets are dropped only at arcs, not at vertices; this issue
will be elaborated in Sect. 6.

For reference, we list our notation throughout the paper
in Table 1.

3.2 Problem Statement

Let τ j ∈ R be the number of packets transmitted into e j
along P in a measurement period; our model has κ j = τ j if a
counter is placed at (e j, P). The loss ratio ` j is expressed by
1−τ j+1/τ j for path P shown in Fig. 2. Let τ̂ j be an estimated
value of τ j (Note that counters are not necessarily placed
at all arcs, and τ j cannot be obtained directly from counter

values if a counter is not placed at (e j, P)). The counter set
C is α-measurable if,

∀P ∈ P,∀e j ∈ P,∀τ j : α · τ j ≤ τ̂ j ≤
1
α
· τ j, (1)

where 0 < α ≤ 1. Our problem is defined as follows: for
given G and P,

min
C⊆E×P

{|C| : C is α-measurable}, (2)

where |C| is the number of counters and α is a constant that
satisfies 0 < α ≤ 1 (this optimization problem will be rede-
fined rigorously in Sect. 4.3 after establishing the theory).

There is a trivial solution of 1-measurable; if we put
counters at every arc on every feasible path, i.e., C =

{(e, P) : P ∈ P, e ∈ P}, it is clearly 1-measurable, but
it requires many counters, |C| =

∑
P∈P |P| ≤ d|P|, where

d = max{|P| : P ∈ P}. Our target is an α-measurable
counter set whose size is close to the number of feasible
paths, since this paper tries to estimate volume change at
each arc given ingress volumes for each feasible path, |P| is
the lower bound for |C|.

4. Per-Path Measurement

This section proposes a polynomial-time algorithm that
finds a counter set that is α-measurable, based on “per-path”
traffic measurement; per-path measurement means that ev-
ery counter is associated with a single feasible path (Sect. 5
associates some counters with a set of paths).

Before going into detail, we overview this section; the
relationship among the measurement matrix A(C), the mea-
surability condition, and the algorithm. Intuitively, each col-
umn of the matrix corresponds to the arc and each row cor-
responds to the path on which we can distinguish whether
it contains abnormal arc (Fig. 1). If any column vector of
A(C) is different from each other and none of them equal
to zero, the matrix A(C) is called 1-independent. When
α = (1 − ε)d−2, 1-independence is a sufficient condition for
making a counter set C α-measurable. Hence, we reformu-
late our problem as follows,

min
C⊆E×P

{|C| : A(C) is 1-independent} (3)

and leverage submodularity [20], which is a discrete analog
of convexity, of the measurement matrix A(C) and propose
polynomial-time algorithm with a theoretically guaranteed
approximation ratio O(log(n)).

In the rest of this section, Sect. 4.1 defines the measure-
ment matrix and other related notions, Sect. 4.2 induces the
sufficient condition, and Sect. 4.3 proposes an approxima-
tion algorithm.

4.1 Definitions

To define the matrix, we define a separable subpath Q ⊆ E.
A separable subpath Q = {e j, e j+1, . . . , ek−1} is a part of a
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Fig. 2 A subpath Q of feasible path P. Counters, (e j, P) and (ek , P), are
placed at the black vertices.

feasible path P = {e1, e2, . . . , el} between a pair of counters
{(e j, P), (ek, P)} (Fig. 2) and satisfies (1− δ) < (1− ε)k− j. In-
specting the counter values {κ j, κk}, we can tell the subpath
contains an abnormal arc or not; The subpath contains an
abnormal arc if and only if κk/κ j ≤ 1 − δ. The condition
(1− δ) < (1− ε)k− j is needed in order to make subpaths con-
taining an abnormal arc separable. The minimum loss ratio
of a subpath containing an abnormal arc is δ. Conversely,
the maximum loss ratio of a subpath in which all arc is nor-
mal state is 1 − (1 − ε)k− j. If (1 − ε)k− j ≤ (1 − δ), we cannot
judge whether the subpath contains an abnormal arc or not.

A measurement matrix, A(C), is defined as follows (we
sometimes omit the argument C if it is clear from the con-
text). Let Q = {Q1,Q2, . . . ,Qm} be a set of separable sub-
paths under a counter set C. Measurement matrix A = (ai j)
is defined as the m × n Boolean matrix of

ai j =

1 e j ∈ Qi

0 otherwise
. (4)

The j-th column vector is denoted by a j ( j = 1, 2, . . . , n).
A matrix A is 1-independent if any column vector of A

is different from each other and none of them equal to zero;
i.e., ∀ j , j′ : a j , a j′ and ∀ j : a j , 0.

Vectors x and y in the introduction are rigorously re-
defined as follows. x is an n-dimensional column vector
whose j-th element indicates that j-th arc is an abnormal
state. y is a m-dimensional column vector whose i-th ele-
ment indicates that subpath Qi includes an abnormal arc.

4.2 Measurability Theorem and Estimation Algorithm

4.2.1 Theorem

When α = (1 − ε)d−2, we can relate the sufficient conditions
of α-measurable to the measurement matrix. Given the
measurement matrix A(C), sufficient conditions of measur-
ability are described by the following theorem.

Theorem 1. When τ j is estimated by Algorihtm 1, a counter
set C is (1 − ε)d−2-measurable, if the measurement matrix
A(C) is 1-independent and every feasible path P has at least
one counter on it.

In the following, we explain an algorithm that is used
to estimate τ̂. Then, we prove its correctness together with
the proof of Theorem 1.

For the sake of simplicity, we assume that the maxi-
mum length of feasible path is at least 3, d ≥ 3, and every
feasible path P has an ingress counter (e1, P) to satisfy the
second condition of the Theorem 1 where e1 is the ingress
arc of feasible path P. Also, we write the set of ingress
counters as C0 = {(e1, P) : P ∈ P} and a set of additional

Algorithm 1: Transmitted Packets Estimation (Per-
Path)

Input: Paths P, Separable subpaths {Q1, . . . ,Qm}, and counter values κ.
Output: Estimated number of packets τ̂ at every arc for each feasible

path.
1 forall i ∈ {1, . . . ,m} do
2 if Qi contains an abnormal arc then yi ← 1 else yi ← 0;

3 ea ← Null;
4 φ← 0;
5 if y , 0 then // Find an abnormal arc
6 ea ← Find an arc e j such that y = a j;
7 Find a separable subpath Q = {e j′ , . . . , ek′−1} that contains ea;
8 φ← κk′ /(βk′− j′−1κ j′ );

9 return { Estimate(P, ea, κ) : P ∈ P };

counters as X = C \C0.

4.2.2 Algorithm

Algorithm 1 estimates the number τ̂ of transmitted packets
for every arc and every path, given a per-path counter set
C and their values κ, where β j equals to

√
(1 − ε) j for all

integer j. The basic idea is as follows. If there is no ab-
normal arc between e1 and e j−1, for any arc e j on a feasible
path P = {e1, . . . , el}, the number of transmitted packets τ j
falls between (1 − ε) j−1τ1 and τ1, (1 − ε) j−1τ1 ≤ τ j ≤ τ1,
since a loss ratio of normal arc is less than or equal to ε
and there are j − 1 arcs between e1 and e j−1. Therefore, we
define the estimator τ̂ j = β j−1κ1 as the midpoint between
(1 − ε) j−1κ1 and κ1 in a logarithmic scale since κ1 = τ1 from
the definition. Consequently, the estimated value τ̂ j satis-
fies the condition β j−1τ j ≤ τ̂ j ≤ τ j/β j−1 for measurability.
If there is an abnormal arc between e1 and e j−1, τ j satisfies
(1 − `a)(1 − ε) j−2τ1 ≤ τ j ≤ (1 − `a)τ1, since a loss ratio of
normal arc is less than or equal to ε and there are j − 2 nor-
mal arcs between e1 and e j−1. By replacing (1− `a) with the
estimator φ of the pass ratio (1− `a), we define the estimator
τ̂ j = φβ j−2κ1. Rigorous arguments, including the definition
of φ are given in later in this section. The estimation algo-
rithm that shown in Algorithm 1 runs as follows.

First, Algorithm 1 constructs the system of Boolean
equations Ax = y from measurement results κ (Lines 1 to
2). Algorithm 1, then, solves the equations and identifies an
abnormal arc ea and estimates its loss ratio if it exists (Lines
3 to 8). Finally, the transmitted packets τ̂ j are estimated
through the subroutine Estimate (Line 9 in Algorithm 1 and
Algorithm 2). In the subroutine, the estimator τ̂ j of loss ratio
of arc e j is β j−1κ1 if j ≤ a, and φβ j−2κ1 otherwise. Correct-
ness of Algorithm 1 and 2 is provided in the following along
with the proof of the Theorem 1.

4.2.3 Proof

We show that if A(C) is 1-independent then the output of the
Algorithm 1, τ̂, satisfies

∀P ∈ P,∀e j ∈ P : β2(d−2) · τ j ≤ τ̂ j ≤
1

β2(d−2)
· τ j. (5)
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Algorithm 2: Estimate (Per-Path)
Input: A feasible path P = {e1, . . . , el}, an abnormal arc ea, and counter

values.
Output: Estimated number of packets τ̂ j at each arc e j on the path P.

1 T ← ∅;
2 forall j ∈ {1 . . . , l} do
3 if ea < P ∨ j ≤ a then
4 τ̂ j ← β j−1κ1;
5 else
6 τ̂ j ← φβ j−2κ1;

7 T ← T ∪ {τ̂ j};

8 return T ;

This proves the correctness of Algorithm 1 and Theorem 1
since (1 − ε)d−2 = β2(d−2).

First, we show that the Algorithm 1 identifies an abnor-
mal arc if it exists. Next, we evaluate accuracy of estimated
value τ̂.

The following Lemma 1 shows that the abnormal arc is
uniquely determined at Line 6 in Algorithm 1. Note that ∨
denotes Boolean OR operator and Boolean OR operator is
used instead of the ordinary sum in Boolean equations.

Lemma 1. Let x j be a binary variable ( j = 1, . . . , n). Then
the system of Boolean equations Ax = y,

ai1x1∨ai2x2∨· · ·∨ainxn = yi (i = 1, 2, . . . ,m), (6)

have unique solution x∗ among to ‖x∗‖ ≤ 1 and x∗j = 1 if
and only if the arc e j is abnormal.

Proof. The mapping x 7→ Ax is injective if the domain is
{x ∈ {0, 1}n : ‖x‖ ≤ 1}. This is because the measurement
matrix A is 1-independent. �

Note that if the j-th arc is abnormal, x∗j = 1, then Ax∗ =

a j. Hence, Algorithm 1 can identify the abnormal arc at
Line 6. As we mentioned in Section 3.1, we assume that
every arc has either a normal state ` j ≤ ε or an abnormal
state ` j ≥ δ, i.e., there is no arc whose loss ratio is ε <
` j < δ. If loss ratios of some arcs are ε < ` j < δ, it is
difficult to judge that a subpath contains an abnormal arc,
since a subpath may not contain an abnormal arc even if
κk/κ j ≤ 1 − δ. Hence, (6) cannot be solved or the solution
does not corresponds to the abnormal arc due to unreliable
yi.

Lemma 2 and 4 evaluate accuracy of the transmitted
packets on normal and abnormal paths.

Lemma 2. Let P = {e1, e2, . . . , el} be a feasible path that
does not include abnormal arcs. Then

β j−1τ j ≤ τ̂ j ≤
1
β j−1

τ j ( j = 1, 2, . . . , l), (7)

where τ̂ j = β j−1κ1 is the estimator of loss ratio of arc e j.

Proof. This is because (1 − ε) j−1 · κ1 ≤ τ j ≤ κ1 for all j =

1, 2, . . . , l. �

Lemma 3. Let `a and Q = {e j′ , . . . , ek′−1} be the loss ratio of

the abnormal arc ea and a separable subpath that contains
ea, respectively. Then

βk′− j′−1 · (1 − `a) ≤ φ ≤
1

βk′− j′−1
· (1 − `a), (8)

where φ = κk′/(βk′− j′−1κ j′ ) is an estimator of the pass ratio
1 − `a on the abnormal arc.

Proof. This is because the separable subpath Q =

{e j′ , . . . , ek′−1} contains ea and (1 − ε)k′− j′−1 · (1 − `a) · κ j′ ≤

κk′ ≤ (1 − `a) · κ j′ since κk′ = τk′ . �

Lemma 4. Let P = {e1, e2, . . . , el} be a feasible path that
contains an abnormal arc, ea (1 ≤ a ≤ l). And let
Q = {e j′ , . . . , ek′−1} be a separable subpath that contains
the abnormal arc. Then

βk′− j′+ j−3·τ j ≤ τ̂ j ≤
1

βk′− j′+ j−3
·τ j ( j = 1, 2, . . . , l), (9)

where the estimator τ̂ j of loss ratio of arc e j is β j−1κ1 if
j ≤ a, and φβ j−2κ1 otherwise.

Proof. If j ≤ a then use Lemma 2. Otherwise, j > a, use
the next Lemma 3 and the fact that (1 − ε) j−2(1 − `a) · κ1 ≤

τ j ≤ (1 − `a)κ1 where `a is the loss ratio at the abnormal arc
ea. �

Hence, we have (5) because in Lemma 2 we have j −
1 ≤ d − 1 ≤ 2(d − 2) from d ≥ 3, and in Lemma 4 we have
k′ − j′ + j − 3 ≤ 2(d − 2) from 1 ≤ j, j′, k′ ≤ d.

4.3 Counter Set Minimization Algorithm

To describe the counter placement algorithm, we reformu-
late our problem (2) based on the Theorem 1 as follows

min
X⊆C̃

{
|X| : g(X) = g(C̃)

}
, (10)

where C̃ is the set of per-path counters, E × P, and g is a
function that represents how close the measurement matrix
A(C0 ∪ X) is to 1-independent. The function g is defined as

g(X) =
∣∣∣{( j, k) : 0 ≤ j < k ≤ n,a j , ak}

∣∣∣ , (11)

where a j is j-th column vector of the measurement matrix
A(C0 ∪ X) and a0 is the zero vector 0. We call this func-
tion g coverage function. Note that the coverage function
g(X) equals to

(
n+1

2

)
if and only if the matrix A(C0 ∪ X) is

1-independent. We leverage submodularity of this coverage
function g for algorithm design.

In this subsection, we give a constructive proof of The-
orem 2 by using Algorithm 3.

Theorem 2. There exists a polynomial-time approximation
algorithm of (10) and its approximation ratio is(

1 +
d − 1

log1−ε(1 − δ) − 1

)
H

(
n(n + 1)

2

)
, (12)
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Algorithm 3: Counter Placement (Per-Path)
Input: A set of feasible paths P and loss thresholds ε, δ.
Output: A set of additional counters XALG that satisfies g(XALG) = g(C̃).

1 X0 ← ∅;
2 while ∃x ∈ C̃ : g0(x|X0) > 0 do
3 x∗ ← arg maxx∈C̃ g0(x|X0);
4 X0 ← X0 ∪ {x∗};

5 Q′ ← Irreducible separable subpaths of X0 at ε = 0;
6 forall Q ∈ Q′ do XALG ←Separate(Q, X0, ε, δ);
7 return XALG;

Algorithm 4: Separate (Per-Path)
Input: A subpath Q = {e j, . . . , ek−1} ⊆ P, a counter set X0, and loss

thresholds ε, δ.
Output: A counter set XALG that divides the subpath Q into separable

subpaths.
1 k′ ← j − 1 + dlog1−ε (1 − δ)e;
2 XALG ← X0;
3 if k′ < k then
4 XALG ← XALG ∪ {(ek′ , P)};
5 Q← {ek′ , . . . , ek−1};
6 XALG ← Separate(Q, XALG, ε, δ);

7 return XALG;

where H(x) is x-th harmonic number
∑x

i=1 1/i.

In the following Sect. 4.3.1 introduces some notations,
Sect. 4.3.2 explains the algorithm, and Sect. 4.3.3 proves the
Theorem 2.

4.3.1 Notations

Here we introduce some notations to explain Algorithms 3
and 4.

A function g(x|X) represents the gain of counter x ∈ C̃
added to X: g(x|X) = g(X ∪ {x}) − g(X). The function g0
is the coverage function for ε = 0, and we have g0(x|X) =

g0(X ∪ {x}) − g0(X).
An irreducible separable subpath Q = {e j, . . . , ek−1} ⊆

P of a counter set C0 ∪ X is a separable subpath of C0 ∪ X
and it does not have any counter in the inside it: ∀e j′ ∈

Q \ {e j, ek−1} = {e j+1, . . . , ek−2} : (e j′ , P) < X. Intuitively, if
a subpath is separable but not irreducible, then it is unnec-
essary to identify abnormal arcs. A separable but not irre-
ducible subpath does not contribute to make a measurement
matrix 1-independent since ai1 j , ai1 j′ ⇒ ai2 j , ai2 j′∨ai2 j ,
ai2 j′ for all j and j′, where Qi1 is a separable but not irre-
ducible subpath that includes two irreducible subpaths Qi2
and Qi3 .

An irreducible measurement matrix of a counter set
C0 ∪ X is the matrix constructed from the irreducible sepa-
rable subpaths of C0 ∪ X along with the definition (4). Note
that the measurement matrix is 1-independent if and only if
the irreducible one is 1-independent.

Let X0 be the intermediate counter set assuming ε = 0
at Line 5 in Algorithm 3, XALG be the output of Algorithm 3,
X∗ be the optimal counter set of (10) for given thresholds ε
and δ. We define a feasible counter set as a counter set that
makes a measurement matrix 1-independent. Both X0 and

XALG are feasible counter sets.

4.3.2 Algorithm

To approximately solve the problem (10), we solve the prob-
lem for ε = 0 and convert its solution X0 into a solution
XALG for given ε and δ. This is because, when the lower
threshold ε equals to 0, the coverage function g0 becomes
a submodular function (Proof sketch in Appendix A.1) and
a simple greedy algorithm yields an approximate solution
with a theoretical guarantee in polynomial-time [21]. Also,
the counter set conversion runs in linear time and the counter
increase is theoretically bounded. Note that the solution
XALG for given ε and δ can differ from the solution X0 for
ε = 0 since the measurement matrix A(X) can be changed
depending on ε and δ. The measurement matrix is defined
by separable subpaths under the given counters, and whether
or not a subpath is separable depends on ε and δ. If ε = 0,
all subpaths are separable from the definition. Conversely,
for example, subpaths with 3 or more arcs are not separable
when ε = 0.1 and δ = 0.2.

First, from Line 1 to Line 4, Algorithm 3 finds a feasi-
ble counter set for ε = 0. In the while loop, we can find the
counter x∗ that maximizes the gain by calculating the gain
g(x|X) for all counters x = (e, P) ∈ E×P\X. After the while
loop, the counter set X0 is a feasible counter set for ε = 0:
g0(X0) = g0(C̃) (Lemma 6).

Then, Algorithm 3 converts the feasible counter set X0
into a feasible one for given thresholds ε and δ by adding
counters through the subroutine Separate (Lines 5, 6, and
Algorithm 4). Every time the subroutine adds a counter
(ek′ , P), the subpath Q = {e j, . . . , ek−1} is divided into two
subpaths Q1 = {e j, . . . , ek′−1} and Q2 = {ek′ , . . . , ek−1}. Line
1 identifies the subscript k′ of the arc at which a counter
should be added. −1 + dlog1−ε(1 − δ)e means the maximum
integer d′ that satisfies 1 − δ < (1 − ε)d′ (i.e. d′ is the maxi-
mum length for a subpath to be separable). Note that, now
the former subpath Q1 is separable for given thresholds ε
and δ. As a result, every irreducible subpath Q for ε = 0
is divided into irreducible subpaths Q1,Q2, . . . ,Ql for given
thresholds ε and δ. After Line 6, the counter set XALG is a
feasible counter set: g(XALG) = g(C̃) (Lemma 5).

4.3.3 Proof

First, we prove the correctness of the Algorithm 3, i.e., the
output counter set XALG satisfies g(XALG) = g(C̃). Then, we
prove the Theorem 2 by evaluating the approximation ratio
of Algorithm 3. Note that it is trivial to show that Algo-
rithm 3 runs in polynomial time for |E| and |P|.

To show the correctness, it is sufficient to prove the fol-
lowing two lemmas.

Lemma 5. If the intermediate counter set X0 satisfies
g0(X0) = g0(C̃) then the output counter set XALG satisfies
g(XALG) = g(C̃).

Lemma 6. The intermediate counter set X0 satisfies
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g0(X0) = g0(C̃).

Proof of Lemma 5. We will prove by contradiction. Let
A = (ai j) be the measurement matrix of XALG for given ε
and δ, A′ = (a′i j) be the irreducible measurement matrix of
X0 for ε = 0. As shown in Algorithm 3, the subroutine Sepa-
rate shown in Algorithm 4 computes the difference between
XALG and X0. The irreducible separable subpath of X0 for
ε = 0 is divided into separable subpaths for geven ε and δ
by XALG. Suppose that g(XALG) < g0(X0). Then, there exist
two arc e j and ek such that a j = ak and a′j , a′k. Hence,
there exists an irreducible separable subpath Q′i for ε = 0 at
X0 such that a′i j , a′ik. This subpath Q′i must be divided into
some subpaths Qi1 , . . . ,Qil through the subroutine Separate.
Thus, we have

a′i j = ai1 j ∨ ai2 j ∨ · · · ∨ ail j, (13)

a′ik = ai1k ∨ ai2k ∨ · · · ∨ ailk, (14)

since all arcs in subpath Qi are included in either of
Qi1 , . . . ,Qil . The right-hand sides of (13) and (14) must not
be equal since a′i j , a′ik. However, this contradicts a j = ak
because the right-hand sides of (13) and (14) are equal if
a j = ak. �

Proof of Lemma 6. The problem of (10) for ε = 0 is
called the submodular cover [21], [22] because the func-
tion g0 is monotone submodular for ε = 0 (Sketch of
proof in Appendix). The previous research [21] shows
that the greedy algorithm from Lines 1 to 4 in Algo-
rithm 3 finds a feasible solution and its approximation ratio
is H(maxx∈C̃ g0({x})). �

To prove the approximation ratio, it is sufficient to
prove the following two lemmas.

Lemma 7. For given ε, δ, and d, the following inequality
holds.

|XALG| ≤

(
1 +

d − 1
log1−ε(1 − δ) − 1

)
|X0|. (15)

Lemma 8. For given n, the following inequality holds.

|X0| ≤ H
(

n(n + 1)
2

)
|X∗|. (16)

Proof of Lemma 7. We have |Q′| = |X0| since there is a one-
to-one relation between the last arc ek−1 of an irreducible
separable subpath Q ⊆ P and a counter (ek, P) ∈ X0. For
each irreducible separable subpath Q ∈ Q′, Separate adds at
most d−1

log1−ε (1−δ)−1 counters to X0. Hence, we have

|XALG| ≤ |X0| +
d − 1

log1−ε(1 − δ) − 1
|Q′| (17)

≤

(
1 +

d − 1
log1−ε(1 − δ) − 1

)
|X0|. (18)

�

Proof of Lemma 8. From the proof of Lemma 6, we have

|X0| ≤ H(max
x∈C̃

g0({x}))|X∗0 | ≤ H
(

n(n + 1)
2

)
|X∗0 | (19)

where X∗0 is an optimal solution of (10) for ε = 0. Also, we
have |X∗0 | ≤ |X

∗| since X∗ is also a feasible counter set for
ε = 0. This is because every irreducible separable subpath
Q of X∗ for given ε and δ is also separable for ε = 0. �

5. Path-Set Measurement

This subsection briefly discusses how to extend Sect. 4 for
“path-set” measurement, in order to reduce the number of
counters. Figure 3 shows a tree that is the union of l paths;
the ingress arcs, e1, e2, . . . , el, are their own but the egress
arc e0 is common. If the l paths were observed individually,
we would require 2l counters, but the tree has only l + 1
counters because the egress counter covers the l paths. This
implies that a counter is defined as a pair of an arc and a set
of feasible paths, i.e., C ⊆ E × 2P.

Due to lack of space, we only present the overview of
the theorems in an informal manner. The measurement ma-
trix A(C) is also defined for path-set counter C in a simi-
lar manner. This matrix induces also sufficient condition of
measurability:

Theorem 3. When τ j is estimated by a similar algorithm
with Algorithm 1, a counter set C is weakly α-measurable,
if the measurement matrix A(C) is 1-independent, where the
constant α is defined as†

α =

√√√√
ζ

1 + ζ

2
−

√(
1 − ζ

2

)2

+ δ − ε

. (20)

where ζ equals to (1 − ε)d−2.

Here weakly α-measurable is a relaxed condition of α-
measurable. The counter set C is weakly α-measurable if,

∀P ∈ P,∀e j ∈ P,∀τ j : α · τ j≤τ̂ j≤
1
α
· τ j or,

α · λ j≤λ̂ j≤
1
α
· λ j,

where λ j is the number of packets dropped between e1 and
e j−1, i.e., λ j = τ1 − τ j. Again, we reformulate our problem

†The last term δ− ε can be considered as the overhead of path-
set measurement since if we remove the last term then we obtain,
α = ζ = (1 − ε)d−2; the same results of Theorem 1.

Fig. 3 A subtree Q. The root arc is e0 while the leaf arcs are e j ( j =

1, 2, . . . , l); the root is not included in Q. Counters, (e j,P j)’s, are placed at
the black vertices.



WATABE et al.: MEASURING LOST PACKETS WITH MINIMUM COUNTERS IN TRAFFIC MATRIX ESTIMATION
83

Algorithm 5: Counter Placement (Path-Set)
Input: A set of feasible paths P and loss thresholds ε, δ,

counter values κ, and a real number ρ.
Output: A counter set XALG that satisfies g(XALG) = g(C̃).

1 X0 ← ∅;
2 while ∃x ∈ C̃ : g0(x|X0) > 0 do
3 x̃← Find x such that

((1/3) − ρ) maxx∗∈C̃ g0(x∗|X0) ≤ g0(x|X0);
4 X0 ← X0 ∪ {x̃};

5 Q′ ← Irreducible separable subtrees of X0 at ε = 0;
6 forall Q ∈ Q′ do XALG ← Separate(Q, X0, ε, δ, κ) ;
7 return XALG

Algorithm 6: Separate (Path-Set)
Input: A subtree Q = {e j, . . . , ek−1} ⊆

⋃
P0, a counter set

X0, loss thresholds ε, δ, and counter values κ.
Output: A counter set XALG that divides the subtree Q

into separable subtrees.
1 XALG ← X0;
2 if Q is separable then return XALG; // Do nothing
3 e∗ ← arg minek∈Q h̃(ek);
4 P∗ ← arg minP j∈P0

h̃(P j);
5 if h̃(e∗) ≤ h̃(P∗) then // Divide at e∗
6 XALG ← XALG ∪ (e∗,∪e∗∈P jP j);
7 (Q1,Q2)← (Ue∗ ,Q \ Ue∗ );
8 else // Peel off P∗
9 XALG ← XALG \ {(e0,P0)} ∪ {(e0,P∗), (e0,P

{
∗ )};

10 (Q1,Q2)← (Q ∩ P∗,Q ∩ P{∗ );

11 XALG ← Separate(Q1, XALG, ε, δ, κ);
12 XALG ← Separate(Q2, XALG, ε, δ, κ);
13 return XALG

as follows,

min
C⊆E×2P

{|C| : A(C) is 1-independent}. (21)

Due to the space limit, we do not describe the path-set ver-
sion of Algorithms 1 and 2, which are used to estimate traffic
volumes based on packet counts.

The remaining of this section, we explain the differ-
ences between path-set algorithm shown in Algorithms 5
and 6 and per-path one.

The algorithm approximately finds the maximum gain
arg max g0(x|X0) since calculating all the gain g0(x|X0) for
all x ∈ C̃ \ X0 takes exponential time (Compare Line 3 in
Algorithms 3 and 5). This is because the number of candi-
date counters roughly equals to |E|2|P|. The following The-
orem provides ((1/3) − ρ)-approximation algorithm by uti-
lizing a submodular maximization algorithm [23] (We omit
the proof due to lack of space).

Theorem 4. There exists a polynomial-time ((1/3) − ρ)-
approximation algorithm for the problem maxx∈C̃ g0(x|X0).

We explain differences between subroutine for path-set
(Algorithm 6) and per-path (Algorithm 4). Algorithm 6 di-
vides a subtree Q and/or peels off a path from it to make

it separable for given ε and δ. Algorithm 6 adds a counter
(ek,

⋃
ek∈P j

P j) inside the subtree and the subtree is divided
into an upper part Uek and a lower part Q \ Uek (Lines 6
and 7). Here Uek is the upper side of the subtree that ob-
tained by dividing the subtree Q at the arc ek (ek is excluded
from Uek ). Or, Algorithm 6 replaces the counter on the
root arc (e0,P0) with two counters {(e0,P j), (e0,P

{
j )}, where

P
{
j is the path set of Q other than P j: P{j =

⋃l
j′=1: j′, j P j

(Line 9). This peels the subpath Q ∩ P j from the subtree
Q and we have new subpath Q ∩ P j and subtree Q ∩ P{j
(Line 10). Algorithm 6 selects counter addition or replace-
ment based on a greedy strategy, which minimizes the de-
viation of the separable condition for path-set (Line 3 to 5).
This deviation is measured by the following function h:

h(Q) = max

0, l∑
j=1

(
1 − (1 − ε)d j

)
κ j − δmin

j
κ j

 . (22)

Note that h(Q) = 0 if and only if Q is separable. Hence,
we define the deviation of dividing at ek as h̃(ek) =

max
(
h(Uek ), h(Q \ Uek )

)
and that of peeling off P j as

h̃(P j) = max
(
h(Q ∩ P j), h(Q ∩ P{j )

)
.

6. Practical Modeling Issues

This section describes how to model a network that consists
of actual switches. We begin with a switch model. We as-
sume that each switch consists of a forwarding element and
several ports. A forwarding element includes a forwarding
information base (FIB) and a switching bus; the FIB deter-
mines an output port through which a packet transmitted,
while the switching bus transfers the packet to the output
port. Each port has a packet queue, an access control list
(ACL), and counters. Ports are categorized to input ports
and output ports. A pair of input and output ports at differ-
ent switches is connected by a point-to-point link.

A FIB and ACL is a set of rules. Each rule associates
a packet filter with an action; a FIB action is one of out-
put ports in the switch, while an ACL action is “permit”
or “discard”. A path along which a packet is transferred is
determined by rules matched to the packet, and so we can
calculate all the feasible paths in a network using the FIBs
and ACLs [24], [25]. Counters are associated with a set of
feasible paths in our method, so packets have to be classi-
fied based on the paths. Packet classification was tradition-
ally designed only for actions at a single switch, but recently
new techniques has been developed to classify packets based
on a combination of switch actions, i.e., a path, at the rate
of 10 Gbps links [15], [16]; this advancement has made our
method feasible. We only consider paths that are not termi-
nated by ACLs, since we are interested in transit traffic for
the TM estimation.

In our graph model introduced in Sect. 3, a FIB and
ACL is represented by a tail of arc, because a path is
switched by FIBs and packets are counted around ACLs.
Figure 4 shows an example. For an input port, we assume
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Fig. 4 A part of network and the corresponding graph model.

that the tail includes the ACL and counters while the arc is
the bus to the FIB. For a forwarding element, the vertex is
the FIB while each arc represents a bus to the correspond-
ing output port. For an output port, the tail is the ACL and
counters, while the arc includes the output queue, the link,
and the opposed input queue.

Since no counter is usually placed at forwarding ele-
ments in ordinary switches, we assume that tails of forward-
ing elements cannot have counters. This implies that we
might not be able to make a network measurable due to the
lack of counters. The packet loss ratios of indistinguishable
arcs should be estimated conservatively in Algorithm 1; take
the worst case as if either arc were determined as abnormal.
Note that this cannot be an issue in OpenFlow networks,
because OpenFlow switches are required to return packet
counts for every flow entry.

7. Experiments

We perform experiments to evaluate our approach using
three configuration datasets and one traffic dataset. The con-
figuration datasets are obtained from Internet2†, Stanford
backbone network [26], and Purdue campus network [27],
while the traffic data comes from Internet2††. The configu-
ration datasets include a network topology and FIBs at ev-
ery switch. Actual ACLs are used only for Stanford. All
transit paths are extracted from the datasets and are used as
feasible paths. The paths for Stanford including ACLs are
extracted according to the model described in Sect. 6. The
statistics are given in Table 2 (arcs on no transit path are
ignored). In the traffic dataset, traffic volumes in byte for
144 paths were measured every 5 min for 7 days. The av-
erage, the variance, and the maximum/minimum ratio are
9.47× 108, 2.32× 1018, and 1.89× 105, respectively. Traffic
volume in the traffic dataset is randomly mapped to a path in
a configuration dataset. Since the traffic data is used to deter-
mine packet counts κ, the traffic volume in byte is translated
into the traffic volume in packets, by assuming the average
packet length equals for all paths.

7.1 Per-Path Measurement

7.1.1 Size of Counter Set

We first calculate the optimal counter set, C0 ∪ X, for per-
path measurement and examine indistinguishable arc-pairs

†http://vn.grnoc.iu.edu/Internet2/fib
††http://www.cs.utexas.edu/ yzhang/research/AbileneTM/

Table 2 Number of elements in the configuration datasets.

Internet2 Stanford Purdue

Switches 9 16 1,503
Ports used 140 58 526
Feasible paths |P| 11,159 331 2,985
Maximum path length d 5 9 5
Arcs with FIB/ACL |E| 140 132 526

Table 3 Number of counters and arc-pairs for ε = 0.

Internet2 Stanford Purdue

Initial counters |C0 | 11,159 331 2,985
Additional counters |X| 116 65 380
Indistinguishable arc-pairs / all arc-pairs 0 / 9,730 49 / 8,646 0 / 138,075

Table 4 Number of matrix rows for the Boolean algebra approach.

Internet2 Stanford Purdue

Number of matrix rows 115 66 380

for ε = 0; an arc pair (ei, e j) ∈ E2 is indistinguishable if the
corresponding column vectors ai,a j are equal. As shown in
Table 3, some arc-pairs are indistinguishable only for Stan-
ford due to the limitation noted in Sect. 6, but they are only
successive FIB and ACL in a same switch, and the arc-pairs
are mutually exclusive. The number of additional counters,
which is shown in Table 3, corresponds to the number of
rows in the measurement matrix. The number of rows is
also calculated for the Boolean algebra approach [14], and
the results are shown in Table 4. The number of additional
counters |X| in Table 3 and the number of matrix rows in Ta-
ble 4 are almost the same value. The results imply that our
approach almost agrees with the lower bound provided by
the Boolean algebra approach; our approach is better than
the bound for Stanford due to the approximation of opti-
mization algorithms.

Next, we verify the number of matrix rows when ε , 0.
In this case, the number of matrix rows depends on thresh-
old δ; Fig. 5 shows the number of matrix rows for ε = 10−5

and 10−5 ≤ δ ≤ 10−1. The green horizontal line shows the
lower bound, i.e., the number of rows for the Boolean al-
gebra approach [14]. Our approach almost converges to the
lower bound for δ > 5.0 × 10−5, and the number at δ = 10−1

is coincident with that for ε = 0 and δ = 1. The Boolean
algebra approach [14] assumes ε � δ to clearly distinguish
abnormal links, but the results show the assumption is un-
necessary even for the traffic volume estimation, which is far
beyond the Boolean algebra approach. Note that, for δ ≈ ε
in Stanford, measurement matrices cannot be obtained since
separable subpaths are not able to be composed due to the
restrictions mentioned in Sect. 6.

7.1.2 Error Bounds

Theorem 1 shows that our approach is (1−ε)d−2-measurable
for per-path measurement. For ε = 10−5 and d shown in Ta-
ble 2, (1−ε)d−2 ≥ 0.99993. The error bounds on a estimation
of traffic volumes are only ±0.01%. Our approach can accu-
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Fig. 5 The number of rows in a measurement matrix.

Table 5 Additional counters |X| for per-path and path-set measurements.

Internet2 Stanford Purdue

Additional counters |X| (per-path) 116 65 380
Additional counters |X| (path-set) 116 67 359

rately estimate traffic volumes, since the accuracy is highly
guaranteed with these error bounds.

7.2 Path-Set Measurement

The size of counter set is also evaluated for path-set mea-
surement; Table 5 gives the size for ε = 0 and δ = 1. Pur-
due gets the largest gain, because it has many large trees
like Fig. 3. The results for Internet2 and Stanford are simi-
lar to the results in Table 3 though |X| for Stanford slightly
increases due to the approximation algorithm. Internet2
has the largest number of feasible paths but they cannot be
merged into trees due to the loss of measurability, while
Stanford does not have feasible paths enough to reduce the
counters.

The time to spend for the path-set version of Algo-
rithm 4 is shorter than 10 sec using a PC with 3.4 GHz Intel
Core i5 processor. The algorithm can be done in an online
manner following a change of traffic volume in 10 sec time
scale or longer.

8. Related Work

To estimate the traffic volumes, conventional TM estima-
tion methods [5]–[11], [28] rely on link traffic measured at
edge switches without breaking the traffic volume to paths or
flows. The estimation is performed with EM algorithm [5],
entropy maximization [6], neural networks [7], and com-
pressive sensing [8], [9]. Some methods are compared
in [10], [11]. Computational costs [28] and monitoring er-
rors [9] are studied. To the best of our knowledge, no litera-
ture addresses packet drops in the context of TM estimation.

A rich collection of fault localization techniques in net-
works has been developed. Network tomography localizes
failed links usually using active probes [29]–[33]. Since ac-
tive probes disrupt production traffic, their use is limited to
off-peak hours. Passive approach to the network tomogra-
phy has been also studied [14], [34]–[36]. References [34]–
[36] depend on TCP signaling packets (e.g., TCP-ACK),
they cannot be applied to UDP traffic. In addition to the net-
work tomography, machine learning approaches have been

also proposed in order to diagnose fault cause [37]. There
has been no method designed to estimate the amount of lost
packets, while the conventional tomography techniques re-
port loss ratio of packets.

Optimization algorithms regarding a submodular func-
tion are well-studied in combinatorial optimization [20].
Approximation algorithms for the submodular cover prob-
lem has been proposed [21], and it is recently generalized
to a monotone submodular cost function [22]. A constant-
factor approximation for maximizing nonnegative submod-
ular functions has been achieved in reference [23].

9. Conclusion

This paper proposed a TM estimation method that handles
packet dropping in a network. With the solid theory about
the measurability based on Boolean matrices, we developed
an optimization algorithm for the minimum counter set. Ex-
periments in real datasets showed its strong performance.
We believe that this paper gives a new viewpoint to network
measurement and opens a novel research field linking the
TM estimation and the fault localization. This research field
embraces mathematical interests as well as practical impor-
tance.

We will extend our method to consider the constraint
of SRAM size. We also will investigate the impact of traf-
fic fluctuation and packet sampling on the accuracy of our
method. This paper assumed path volumes are directly
counted at ingress switches, but they could be estimated by
TM estimation techniques; this approach gives us opportu-
nities to reduce counters further, though estimation errors
might not be bounded.
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Appendix: Proofs

A.1 Submodularity of Coverage Functions

This appendix proves the following Theorem 5.

Theorem 5. Coverage function g0 for ε = 0 is submodular.

We only show the proof for the path measurability, but
the proof for the pathset is almost same.

The function g0 for ε = 0 is submodular if and only if
g0(x|X) ≤ g0(x|X′) for all X ⊇ X′ and x < X. If ai = a j
in X but a′i , a′j in X ∪ {x}, this is mentioned as the arc
pair, e j, ek, is distinguished by adding the new counter x to
X where (ai j) and (a′i j) are the measurement matrices of X
and X′, respectively. A part of feasible path P, which starts
from ei to e j, is denoted by Pi→ j (ei ∈ Pi→ j but e j < Pi→ j).

Lemma 9. Let a new counter x = (el, P) be added to
counter set X and be placed after an arc ek, where ek was
the last counter arc on feasible path P (Fig. A· 1 (Top)). If
an arc pair, ei, e j ∈ E, is distinguished by the new counter x,
then they satisfy ei ∈ Pk→l ∧ e j < P1→l or vice versa.

Proof. Proof by contradiction. Suppose the other the other
arc e j is in P1→l. If e j is in the same part Pk→l, then the pair
ei, e j is clearly undistinguished, which is a contradiction. If
e j is in P1→k, then the pair ei, e j is already distinguished in
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Fig. A· 1 (Top) Counter (el, P) is put at the red vertex, which follows the
preceding counters. (Bottom) Counter (el, P) is put at the red vertex, which
is between other counters.

X. This, however, contradicts to the assumption that adding
x distinguishes the pair ei, e j. �

Lemma 10. Let a new counter x = (el, P) be added to
counter set X and be placed between two counter arcs ek
and em on feasible path P (Fig. A· 1 (Bottom)). If an arc
pair, ei, e j ∈ E, is distinguished by x, then they satisfy
ei ∈ Pk→l ∧ e j ∈ Pl→m or vice versa.

Proof. It can be proven by contradiction like Lemma 9. �

The submodularity of g is finally shown in the follow-
ing lemma.

Lemma 11. The submodularity condition, g0(x|X) ≤

g0(x|X′), holds for X ⊇ X′ and x < X.

Proof. It is sufficient to show that any arc pair distinguished
by adding x to X is also distinguished by adding x to X′.

• Consider the case that the counter x = (el, P) is placed
after the last counter arc on P (Fig. A· 1 (Top)). If an arc
pair ei, e j is distinguished by adding the new counter x
to X, then ei ∈ Pk→l and e j < P1→l from Lemma 9. This
arc pair is also distinguished by adding x to X′, because
every feasible path has the ingress counter (e1, P) as C0
and ei is in the subpath of P1→l, which is created by x.

• Consider the other case, the counter x = (el, P) is
placed before the last counter arc on P (Fig. A· 1 (Bot-
tom)). In a similar way with the previous case, we can
show that the arc pair is also distinguished by adding x
to X′, using Lemma 10.
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