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On the Search Algorithm for the Output
Distribution That Achieves the

Channel Capacity
Kenji Nakagawa, Member, IEEE, Kohei Watabe, Member, IEEE, and Takuto Sabu

Abstract— We consider a search algorithm for the output
distribution that achieves the channel capacity of a discrete
memoryless channel. We will propose an algorithm by iterated
projections of an output distribution onto affine subspaces in
the set of output distributions. The problem of channel capacity
has a similar geometric structure as that of smallest enclosing
circle for a finite number of points in the Euclidean space. The
metric in the Euclidean space is the Euclidean distance and the
metric in the space of output distributions is the Kullback–Leibler
divergence. We consider these two problems based on Amari’s
α-geometry. Then, we first consider the smallest enclosing circle
in the Euclidean space and develop an algorithm to find the center
of the smallest enclosing circle. Based on the investigation, we will
apply the obtained algorithm to the problem of channel capacity.

Index Terms— Channel capacity, discrete memoryless chan-
nel, smallest enclosing circle, information geometry, projection
algorithm.

I. INTRODUCTION

THE channel capacity C of a discrete memoryless channel
is defined as the maximum of the mutual information.

C is also formulated as the solution of a min max prob-
lem concerned with the Kullback-Leibler divergence [4], [7].
If we replace the Kullback-Leibler divergence with the Euclid-
ean distance, a similar problem in the Euclidean space is
obtained. That is the problem of smallest enclosing circle for
a finite number of points. In this paper, we will investigate the
problem of smallest enclosing circle in the Euclidean space
geometrically, and develop an algorithm to compute the solu-
tion to the min max problem of the Euclidean distance. Then,
the resulting algorithm will be applied to the min max problem
of channel capacity to make an algorithm for calculating the
output distribution that achieves the channel capacity. The
reason for taking such an approach is because the Euclidean
geometry is familiar to us, so it may be easier to make new
geometric algorithms.

As mentioned above, the problem of channel capacity is
described by an optimization problem concerned with the
output probability distributions. The geometry on the set of
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output probability distributions is the information geome-
try [1]. The Euclidean geometry and the information geometry
can be considered in a unified manner from the viewpoint of
α-geometry by Amari [1]. Therefore, the solution algorithm
for the problem of smallest enclosing circle can be applied
to the problem of channel capacity through this geometric
similarity. For that purpose, it is necessary to use only the
applicable properties to the problem of channel capacity.
If it is achieved, then an algorithm obtained in the smallest
enclosing circle can be transplanted almost automatically to
the channel capacity. In this paper, we will actually use only
barycentric coordinate, inner product, Pythagorean theorem,
and projection onto affine subspaces, as common properties
in both geometries, to develop a computation algorithm. The
algorithm is called a “projection algorithm.”

In this paper, first we consider the algorithm for calculating
the center of the smallest enclosing circle for a finite number
of points in general position in the Euclidean space. Then,
similarly, in the case that the row vectors of the channel
matrix are in general position, we consider the algorithm for
calculating the output distribution that achieves the channel
capacity. We will show that the both problems are solved by
common geometric properties. Further, based on the above
investigation, we consider the case that the finite number of
points and the row vectors are not necessarily in general
position. Then, finally we propose heuristic search algorithms
and perform the proposed algorithm for randomly generated
placements of points and row vectors. We evaluate the per-
centage that correct solutions are obtained by our heuristic
algorithm.

A. Related Works

There are roughly two categories of calculation methods for
the channel capacity, one is solving equations due to [6] and
the other is a sequential calculation method due to Arimoto [2].
In [6], the input probability distribution that achieves the
channel capacity is obtained by solving directly the equations
derived from the Lagrange multiplier method. In this case, we
should take care of the inequality condition that the probability
takes a non-negative value. Simply solving the equations by
ignoring this inequality condition may yield a solution of a
negative probability. Of course this is not a correct solution.
The inequality condition makes the problem difficult, however,
we can say this difficulty makes the problem attractive. In [6],
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if a solution includes a negative probability, one of the input
symbols should be removed and solving equations should be
continued repeatedly until all the probabilities become non-
negative. Therefore, if all the possibilities are exhausted, the
total number of equations to be solved is exponential.

Our calculation method of the channel capacity C proposed
in this paper belongs to the same category as [6]. For the
comparison of our method with Muroga’s, we will evaluate
the percentage of the correctly obtained values of the channel
capacity by our heuristic algorithm and further, compare the
computational complexity of two methods.

In Arimoto’s sequential approximation method [2], the
channel capacity of an arbitrary channel matrix is calculated
numerically by a recurrence formula. This method does not
yield a negative probability, but corresponding to it, if some
input probability becomes 0, an exceptional treatment is
required in the calculation of a reverse channel. Both in [2]
and [6], it is important to determine which input symbol has
a positive probability. That is a main subject of this paper.

B. Channel Matrix and Channel Capacity

Let us consider a discrete memoryless channel X → Y with
input source X and output source Y . Denote by {x1, · · · , xm}
the input alphabet and {y1, · · · , yn} the output alphabet. The
conditional probability Pi

j that y j is received when xi was
transmitted is denoted by

Pi
j = P(Y = y j |X = xi ), i = 1, · · · , m, j = 1, · · · , n,

and the row vector Pi is defined by

Pi = (Pi
1 , · · · , Pi

n), i = 1, · · · , m. (1)

The channel matrix � is defined by

� =
⎛
⎜⎝

P1

...
Pm

⎞
⎟⎠ =

⎛
⎜⎝

P1
1 · · · P1

n
...

...
Pm

1 · · · Pm
n

⎞
⎟⎠ . (2)

The set �̄m of all input probability distributions on the input
alphabet {x1, · · · , xm} is defined by

�̄m = {λ = (λ1, · · · , λm)|λi ≥ 0, i = 1, · · · , m,

m∑
i=1

λi = 1}.

Similarly, the set �̄n of all output probability distributions on
the output alphabet {y1, · · · , yn} is defined by

�̄n ={Q = (Q1, · · · , Qn)|Q j ≥ 0, j =1, · · · , n,

n∑
j=1

Q j =1}.

The output distribution Q ∈ �̄n corresponding to the
input distribution λ ∈ �̄m is denoted by Q = λ�, i.e.,
Q j = ∑m

i=1 λi Pi
j , j = 1, · · · , n, and the mutual information

I (λ,�) is defined by

I (λ,�) =
m∑

i=1

n∑
j=1

λi Pi
j log

Pi
j

Q j
. (3)

Then, the channel capacity C is defined by

C = max
λ∈�̄m

I (λ,�). (4)

For two output distributions Q = (Q1, · · · , Qn), Q′ =
(Q′

1, · · · , Q′
n) ∈ �̄n , the Kullback-Leibler divergence

D(Q‖Q′) is defined by

D(Q‖Q′) =
n∑

j=1

Q j log
Q j

Q′
j
, (5)

see [4]. The channel capacity C is also formulated by the
Kullback-Leibler divergence as follows [4]:

C = min
Q∈�̄n

max
1≤i≤m

D(Pi ‖Q). (6)

For some channel matrix, the input distribution λ that
achieves (4) is not unique, but the output distribution Q
that achieves (6) is unique for any channel matrix [4].
By virtue of the uniqueness, it is easier to consider the method
of calculating the channel capacity C based on (6) using
geometric properties of the Kullback-Leibler divergence.

On the other hand, in order to prove that the resulting
output distribution actually achieves C , we will use the convex
optimization (4) rather than the geometrical consideration
by (6). Concerning (4), the following Kuhn-Tucker condition
holds [5].

Theorem (Kuhn-Tucker Condition for the Problem of Chan-
nel Capacity): A necessary and sufficient condition for an
input distribution λ∗ = (λ∗

1, · · · , λ∗
m ) ∈ �̄m to achieve the

channel capacity C is that there exists a value C0 with

D(Pi‖λ∗�)

{
= C0, for i with λ∗

i > 0,

≤ C0, for i with λ∗
i = 0.

(7)

Then, C0 is equal to C .

C. Smallest Enclosing Circle

Now, replacing D(Pi ‖Q) in (6) with the Euclidean dis-
tance, we can consider a similar problem in R

n . That is, for
P1, · · · , Pm ∈ R

n , let us consider

min
Q∈Rn

max
1≤i≤m

d(Pi , Q), (8)

where d(Pi , Q) denotes the Euclidean distance between the
points Pi and Q in R

n . This is the problem of smallest
enclosing circle for the set of points {P1, · · · , Pm }. The
purpose of this paper is to study the problem of smallest
enclosing circle geometrically and obtain a search algorithm
for the optimal solution. Then, through the similarity of (6) and
(8), we will apply the resulting algorithm to obtain a search
algorithm for the output distribution that achieves the channel
capacity.

Then, first, let us consider the problem of smallest enclosing
circle in the Euclidean space.
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Fig. 1. Smallest enclosing circle for acute triangle 	P1 P2 P3.

II. PROBLEM OF SMALLEST ENCLOSING CIRCLE IN THE

EUCLIDEAN SPACE

Consider a finite number of points P1, · · · , Pm in the
n dimensional Euclidean space R

n . The smallest sphere
in R

n that includes these points in its inside or on the
boundary is called the smallest enclosing circle, and is rep-
resented by �(P1, · · · , Pm ). The smallest enclosing circle
�(P1, · · · , Pm ) is formulated by (8). The Q = Q∗ that
achieves (8) is the center of �(P1, · · · , Pm ) and d∗ =
max1≤i≤m d(Pi , Q∗) is its radius.

A. Equidistant Point and Projection

As a simplest example, let us consider the center Q∗ and the
radius d∗ of the smallest enclosing circle � = �(P1, P2, P3)
for three points P1, P2, P3 in R

2. We will investigate sepa-
rately in cases that 	P1 P2 P3 is an acute triangle and obtuse
triangle.
(I) Case that 	P1 P2 P3 is an acute triangle (see Fig.1).

In this case, the circumcenter of 	P1 P2 P3, i.e., the equally
distant point Q0 from P1, P2, P3 is the center of the smallest
enclosing circle � and d(P1, Q0)(= d(P2, Q0) = d(P3, Q0))
is its radius d∗.

From this example, we find it valid to consider the equidis-
tant point Q0 from the given points P1, · · · , Pm .
(II) Case that 	P1 P2 P3 is an obtuse triangle (see Fig.2).

In this case, assuming 
 P1 is an obtuse angle, we see that
the center Q∗ of the smallest enclosing circle � is the midpoint
of the side P2 P3, and the radius d∗ is equal to d(P2, Q∗)
(= d(P3, Q∗)). The equidistant point Q0 from P1, P2, P3

exists, however, Q0 is not the center of the smallest enclosing
circle because Q0 is outside of 	P1 P2 P3. Then, defin-
ing Q1 as the nearest point from Q0 on the straight line
L(P2, P3) passing through P2, P3, we write it as Q1 =
π(Q0|L(P2, P3)). Q1 is called the projection of Q0 onto
L(P2, P3). Q1 is the midpoint of the side P2 P3, therefore,
we have Q∗ = Q1.

Fig. 2. Smallest enclosing circle for obtuse triangle 	P1 P2 P3.

From this example, we find it valid to consider the projec-
tion of the equidistant point Q0 onto some set if Q0 is outside
of 	P1 P2 P3. In this paper, we call it the projection algorithm
that calculates the center Q∗ of the smallest enclosing circle
(or the output distribution Q∗ achieving the channel capacity)
by the projection onto a straight line passing through two
points or an affine subspace spanned by plural points.

B. Barycentric Coordinate

Let O be the origin of R
n . Henceforth, for the sake of

simplicity, we write Pi instead of
−−→
O Pi , λ1 P1 +λ2 P2 instead

of λ1
−−→
O P1 + λ2

−−→
O P2, and P2 − P1 instead of

−−−→
P1 P2, and so

on. Depending on the case, we consider Pi as a point in R
n ,

or as a vector
−−→
O Pi .

We say that m points P1, · · · , Pm ∈ R
n are in general

position if the vectors P2 − P1, · · · , Pm − P1 are linearly
independent, or

rank

⎛
⎜⎝

P2 − P1

...

Pm − P1

⎞
⎟⎠ = m − 1. (9)

Let L0 = L(P1, · · · , Pm ) denote the affine subspace spanned
by P1, · · · , Pm , i.e., the minimum affine subspace including
P1, · · · , Pm , then we have dim L0 = m − 1 under the
condition (9).

We will use the barycentric coordinate to represent the
position of a point in L0. Consider m points P1, · · · , Pm ∈ R

n

in general position. The barycentric coordinate of a point
Q ∈ L0 about P1, · · · , Pm is defined as the m-tuple of real
numbers λ = (λ1, · · · , λm) with

{
Q = λ1 P1 + · · · + λm Pm , (10)

λ1 + · · · + λm = 1. (11)

The barycentric coordinate λ in the problem of smallest
enclosing circle corresponds to the input probability λ in the
problem of channel capacity.
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C. Analysis for Smallest Enclosing Circle

The smallest enclosing circle �(P1, · · · , Pm ) for P1, · · · ,
Pm ∈ R

n is obtained by solving the min max problem (8).
In (8), the problem is expressed by the distance d(Pi , Q), so
it is easily understood geometrically. Therefore, it is possible
to develop a solution algorithm by geometric considerations.
In fact, in this paper, we will develop new algorithms based
on (8). However, in order to prove that the algorithm is correct,
the double optimization problem as (8) is difficult to apply.
Then, a convex optimization problem (convex programming)
as a simple optimization problem equivalent to (8) is given as
follows.

The coordinates of P1, · · · , Pm are defined by

Pi = (Pi
1 , · · · , Pi

n) ∈ R
n, i = 1, · · · , m, (12)

and a matrix � with row vectors Pi is defined by

� =
⎛
⎜⎝

P1

...
Pm

⎞
⎟⎠ =

⎛
⎜⎝

P1
1 · · · P1

n
...

...
Pm

1 · · · Pm
n

⎞
⎟⎠ ∈ R

m×n . (13)

A vector a is defined by a = (‖P1‖2, · · · , ‖Pm‖2), where
‖Pi ‖2 = ∑n

j=1(Pi
j )

2 is the squared norm of the vector
Pi , i = 1, · · · , m. Then, a function f (λ,�) of λ ∈ R

m

associated with � is defined by

f (λ,�) = λ ta − λ� t� tλ, (14)

where, t denotes the transposition of vector or matrix. f (λ,�)
is a differentiable and convex upward function of λ. Let us
define �̄m by

�̄m = {λ = (λ1, · · · , λm)|λi ≥ 0, i = 1, · · · , m,

m∑
i=1

λi = 1},

then the convex optimization problem

max
λ∈�̄m

f (λ,�) (15)

is equivalent to the problem of smallest enclosing circle [8].
For λ = λ∗ that achieves (15), Q∗ ≡ λ∗� is the center
of the smallest enclosing circle �(P1, · · · , Pm) and d∗ ≡√

f (λ∗,�) is its radius [8].
For (15), the following Kuhn-Tucker condition holds [5],

and [8].
Theorem: (Kuhn-Tucker condition for the problem of

smallest enclosing circle) A necessary and sufficient condition
for λ∗ = (λ∗

1, · · · , λ∗
m) ∈ �̄m to achieve (15) is that there

exists d0 with

d(Pi ,λ∗�)

{
= d0, for i with λ∗

i > 0,

≤ d0, for i with λ∗
i = 0.

(16)

Then, Q∗ = λ∗� is the center of the smallest enclosing circle
�(P1, · · · , Pm ) and d∗ = d0 is its radius.

D. Equidistant Point From P1, · · · , Pm and Its Barycentric
Coordinate

For P1, · · · , Pm ∈ R
n , the equidistant point from P1, · · · ,

Pm is a point Q0 ∈ L0 = L(P1, · · · , Pm) that satisfies
d(P1, Q0) = · · · = d(Pm , Q0).

Now, we assume in this chapter that P1 · · · , Pm are in
general position. Then, defining

� =
⎛
⎜⎝

P2 − P1

...

Pm − P1

⎞
⎟⎠ ∈ R

(m−1)×n, (17)

we have from (9)

rank � = m − 1. (18)

We will calculate the barycentric coordinate λ0 of the equidis-
tant point Q0 ∈ L0.

1) Calculation of λ0: The coordinate of Pi is defined
by (12) and the m ×n matrix � is defined by (13). Define the
coordinate of Q0 by

Q0 = (Q0
1, · · · , Q0

n) ∈ R
n, (19)

and further define the following:

P̂i = (1, Pi )

= (1, Pi
1 , · · · , Pi

n) ∈ R
n+1, i = 1, · · · , m, (20)

Q̂0 = (1, Q0) = (1, Q0
1, · · · , Q0

n) ∈ R
n+1, (21)

�̂ =
⎛
⎜⎝

P̂1

...

P̂m

⎞
⎟⎠

=
⎛
⎜⎝

1 P1
1 · · · P1

n
...

...
...

1 Pm
1 · · · Pm

n

⎞
⎟⎠ ∈ R

m×(n+1), (22)

J =

⎛
⎜⎜⎜⎝

−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1

⎞
⎟⎟⎟⎠ ∈ R

(m−1)×m, (23)

â = (‖P̂1‖2, · · · , ‖P̂m‖2) ∈ R
m , (24)

1 = (1, · · · , 1) ∈ R
m . (25)

Because P1, · · · , Pm ∈ R
n are in general position, we see

rank �̂ = m. In fact, if
∑m

i=1 ci P̂i = O, then
∑m

i=2 ci

(Pi − P1) = O, hence from (18) we have ci = 0,
i = 1, · · · , m.

The barycentric coordinate λ0 of Q0 about P1, · · · , Pm

satisfies {
Q0 = λ0�, (26)

λ0 t1 = 1. (27)

Together (26) and (27) is written as

Q̂0 = λ0�̂. (28)

The equidistant point Q0 from P1, · · · , Pm satisfies

d(Pi , Q0) = d(P1, Q0), i = 2, · · · , m, (29)
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hence we have from (29)

2(Pi − P1)tQ0 = ‖Pi‖2 − ‖P1‖2, i = 2, · · · , m, (30)

and from (20), (21), (30),

2(P̂i − P̂1)t Q̂0 = ‖P̂i‖2 − ‖P̂1‖2, i = 2, · · · , m. (31)

Since (31) is written as

2J �̂t Q̂0 = J t â, (32)

we have from (28)

2J �̂t �̂tλ0 = J t â. (33)

Defining M ≡ �̂t �̂ ∈ R
m×m , we have from (33)

J (2Mtλ0 − t â) = 0. (34)

Because rank M = rank �̂ = m, M is non-singular. Since
Ker J = {τ t 1|τ ∈ R}, from (34) there exists τ ∈ R with

λ0 = 1

2
(â + τ1)M−1. (35)

So, from (27)

1 = λ0 t1 = 1

2
(â + τ1)M−1 t1, (36)

and from (36), we have

τ = 2 − âM−1 t 1
1M−1t 1

. (37)

Substituting (37) into (35), we finally have

λ0 = 1

2

(
â + 2 − âM−1 t 1

1M−1 t 1
1
)

M−1. (38)

This is the barycentric coordinate of the equidistant point Q0.

E. Inner Product, Pythagorean Theorem and Projection
in R

n

We will describe the inner product, Pythagorean theorem
and projection in R

n , which are important to determine the
solution of the problem of smallest enclosing circle by the
projection algorithm.

1) Inner Product: For three points Qk = (Qk
1, · · · , Qk

n) ∈
R

n, k = 1, 2, 3, let us define the inner product (Q1−Q2, Q3−
Q2) by

(Q1 − Q2, Q3 − Q2) =
n∑

j=1

(Q1
j − Q2

j )(Q3
j − Q2

j ). (39)

This is the inner product of two vectors Q1 − Q2(= −−−→
Q2 Q1)

and Q3 − Q2(= −−−→
Q2 Q3).

We have the following lemmas.
Lemma 1: For points Pi (i = 1, · · · , m), Q, R in R

n , con-
sider the inner products σi = (Pi − Q, R − Q), i = 1, · · · , m.
If

∑m
i=1 λi = 1, then we have

m∑
i=1

λiσi =
( m∑

i=1

λi Pi − Q, R − Q
)
.

Proof: By a simple calculation. �

Lemma 2: For any P, Q ∈ R
n, P 
= Q, we have

(P − Q, P − Q) > 0.

Proof: By a simple calculation. �
Lemma 3: For any P, Q, R ∈ R

n , we have

2(P − Q, R − Q) = d2(P, Q) + d2(Q, R) − d2(P, R).
Proof: By a simple calculation. �
2) Pythagorean Theorem: For three points P, Q, R in R

n ,
the following Pythagorean theorem and its inequality versions
hold.

Theorem 1 (Pythagorean): For P, Q, R ∈ R
n , we have

(P − Q, R − Q) � 0 ⇐⇒ d2(P, Q) + d2(Q, R)

� d2(P, R). (40)
Proof: By Lemma 3. �
3) Projection: For a point Q′ ∈ R

n and a subset L ⊂ R
n ,

the point Q = Q′′ that achieves minQ∈L d(Q, Q′) is called the
projection of Q′ onto L, and is denoted by by Q′′ = π(Q′|L).
In this paper, we consider only affine subspaces of R

n as L.
The projection onto an affine subspace is easily calculated
because there is no inequality constraint.

Lemma 4: Let L be an affine subspace of R
n . For any

Q′ ∈ R
n , the projection Q′′ = π(Q′|L) exists and is unique.

Moreover, Q′′ = π(Q′|L) is equivalent to that (P − Q′′, Q′ −
Q′′) = 0 holds for any P ∈ L.

Proof: see [9]. �
4) Projection of Equidistant Point: For P1, · · · , Pm ∈ R

n

in general position, let L0 = L(P1, · · · , Pm) be the
affine subspace spanned by P1, · · · , Pm and Q0 ∈ L0
be the equidistant point from P1, · · · , Pm . We see from (38)
that Q0 uniquely exists. Further, we define Lk =
L(Pk+1, · · · , Pm ), k = 0, · · · , m − 2 as the affine subspace
spanned by Pk+1, · · · , Pm . L0 ⊃ L1 ⊃ · · · ⊃ Lk ⊃ · · · is a
decreasing sequence of affine subspaces whose dimensions are
decreasing by 1. Let Q1 = π(Q0|L1) be the projection of Q0

onto L1. Further, let Qk = π(Qk−1|Lk), k = 1, · · · , m − 2.
We see that Qk is the equidistant point from Pk+1, · · · , Pm .

We have the following lemmas.
Lemma 5: Qk = π(Q0|Lk), k = 0, 1, · · · , m − 2.
Proof: It is trivial for k = 0, 1 by definition. Then, we

prove for k = 2. From Lemma 4 and Theorem 1, we have
d2(Q, Q0) = d2(Q, Q1)+d2(Q1, Q0) for any Q ∈ L2 ⊂ L1.
Therefore, with respect to Q ∈ L2 minimizing d(Q, Q0) is
equivalent to minimizing d(Q, Q1). Because the projections
π(Q0|L2) and π(Q1|L2) are unique by Lemma 4, so we
have π(Q0|L2) = π(Q1|L2). For k ≥ 3, we can prove it
by mathematical induction. �

Lemma 6: (Qi − Qk, Q0 − Qk) = (Qi − Qk , Qi − Qk), i =
0, 1, · · · , k, k = 0, 1, · · · , m − 2.

Proof: By calculation, we have (Qi − Qk, Q0 − Qk) =
−(Qk − Qi , Q0 − Qi ) + (Qi − Qk , Qi − Qk). Since Qk ∈
Lk ⊂ Li , we have (Qk − Qi , Q0 − Qi ) = 0 by Lemma 4. �

F. Search for Q∗ by Projection Algorithm

As we discussed in section II-A, it is valid to consider the
equidistant point Q0 and the projection of Q0 onto some affine
subspace. We are calling this a projection algorithm.
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For given points P1, · · · , Pm , let Q∗ be the center of the
smallest enclosing circle � = �(P1, · · · , Pm) and d∗ be its
radius. In this chapter, we are assuming that P1, · · · , Pm are
in general position, and then we will show that Q∗, d∗ are
calculated by the projection algorithm in some situations.

1) Situation 1 [There Is Just One Negative Component of
Barycentric Coordinate at Every Projection.]: First, let us
consider the following example.

Example 1: Consider four points P1 =
(−10, 1,−3), P2 = (−9,−2, 8), P3 = (−8, 10,−5), P4 =
(4,−8, 8) given in R

3. P1, · · · , P4 are in general
position. The equidistant point from P1, · · · , P4 is
Q0 = (1.93, 4.59, 2.85), and its barycentric coordinate λ0 is

λ0 = (−0.84, 0.04, 1.11, 0.69), (41)

which is calculated by (38). Since λ0
1 = −0.84 < 0,

we remove P1 and calculate the projection of Q0 onto
L1 = L(P2, P3, P4), i.e., Q1 = π(Q0|L1). We have
Q1 = (0.48, 1.45,−0.16) and its barycentric coordinate λ1 is

λ1 = (0,−0.31, 0.63, 0.68). (42)

Since λ1
2 = −0.31 < 0, we remove P2 and calculate

the projection Q2 of Q1 onto L2 = L(P3, P4), i.e.,
Q2 = π(Q1|L2). We have Q2 = (−2, 1, 1.5), and its
barycentric coordinate λ2 is

λ2 = (0, 0, 0.5, 0.5). (43)

Then, we have d(P1, Q2) = 9.18, d(P2, Q2) = 10.01,
d(P3, Q2) = d(P4, Q2) = 12.62, so by the Kuhn-Tucker
condition (16), we see that Q2 is the center of the smallest
enclosing circle, i.e., Q∗ = Q2, and thus, d∗ = d(P3, Q2).

In this section, we represent “situation 1” as the case that
there is just one negative component of barycentric coordinate
at every projection like (41), (42), and all the components are
non-negative at the last projection like (43). We will calculate
below the smallest enclosing circle by the projection algorithm
in situation 1.
Assumption of situation 1 Assume P1, · · · , Pm ∈ R

n are
in general position, and let Lk = L(Pk+1, · · · , Pm), k =
0, 1, · · · , m − 2 be the affine subspace spanned by Pk+1,
· · · , Pm . Let Q0 ∈ L0 be the equidistant point from
P1, · · · , Pm , and define Qk = π(Qk−1|Lk), k = 1, · · · , m −
2. The barycentric coordinate of Qk about P1, · · · , Pm is
denoted by λk = (λk

1, · · · , λk
m). Let K = 0, 1, · · · , m − 2.

We assume that for k = 0, 1, · · · , K − 1, there is just one
negative component of λk , and for k = K , all the components
of λK are non-negative. That is,

λ0 = (λ0
1, λ

0
2, · · · , λ0

m) = (−,+, · · · ,+),

λ1 = (λ1
1, λ

1
2, λ

1
3, · · · , λ1

m) = (0,−,+, · · · ,+),

λ2 = (λ2
1, λ

2
2, λ

2
3, λ

2
4, · · · , λ2

m) = (0, 0,−,+, · · · ,+),

...

λK−1 = (λK−1
1 , · · · , λK−1

K−1, λ
K−1
K , · · · , λK−1

m )

= (0, · · · , 0,−,+, · · · ,+),

λK = (λK
1 , · · · , λK

K , λK
K+1, · · · , λK

m )

= (0, · · · , 0,+, · · · ,+).

If K = 0, we assume λ0 = (+,+, · · · ,+). Summarizing
above, we have, for k = 0, 1, · · · , K − 1,

λk
i

{ = 0, i = 1, · · · , k, (44a)
< 0, i = k + 1, (44b)
> 0, i = k + 2, · · · , m, (44c)

and for k = K ,

λK
i

{ = 0, i = 1, · · · , K , (45a)
> 0, i = K + 1, · · · , m. (45b)

(The end of Assumption of situation 1)
Now, let us consider the inner products σi ≡ (Pi −

QK , Q0 − QK ), i = 1, · · · , m. We have the following lemma.

Lemma 7: σi

{
< 0, i = 1, · · · , K ,
= 0, i = K + 1, · · · , m.

Proof: By Lemma 5, we have QK = π(Q0|L K ), L K =
L(P K+1, · · · , Pm ). Since Pi ∈ L K for i = K +1, · · · , m, so
by Lemma 4 we have Pi − QK ⊥ Q0 − QK , thus

σi = 0, i = K + 1, · · · , m. (46)

Next, we will prove σi < 0, i = 1, · · · , K by mathematical
induction in the order of i = K , K − 1, · · · , 1.
(I) Prove σK < 0:

From (44a), (46), we have

λK−1
K σK =

m∑
i=1

λK−1
i σi

=
(

m∑
i=1

λK−1
i Pi − QK , Q0 − QK

)
(by Lemma 1)

= (QK−1 − QK , Q0 − QK )

= (QK−1 − QK , QK−1 − QK ) (by Lemma 6)

> 0. (by Lemma 2) (47)

Since λK−1
K < 0 from (44b), we have σK < 0.

(II) Assuming σK < 0, σK−1 < 0, · · · , σk+1 < 0, prove
σk < 0:

From (44a), (46), we have

K∑
i=k

λk−1
i σi =

m∑
i=1

λk−1
i σi

=
(

m∑
i=1

λk−1
i Pi − QK , Q0 − QK

)

= (Qk−1 − QK , Q0 − QK )

= (Qk−1 − QK , Qk−1 − QK )

> 0, (48)

i.e., λk−1
k σk + ∑K

i=k+1 λk−1
i σi > 0. By the induction hypoth-

esis, σi < 0, i = k + 1, · · · , K , and by (44b), λk−1
k < 0,

by (44c), λk−1
i > 0, i = k + 1, · · · , K , therefore we obtain

σk < 0.
(III) From the above (I),(II), we have σi < 0,
i = 1, · · · , K . �

Lemma 8: d(Pi , QK ) < d(P K+1, QK ) = · · · = d(Pm ,
QK ), i = 1, · · · , K .

Proof: By Lemma 7, σi = 0, i = K + 1, · · · , m, thus by
Theorem 1, we have d(P K+1, QK ) = · · · = d(Pm , QK ).
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Also by Lemma 7, σi < 0, i = 1, · · · , K , thus for
i = 1, · · · , K , we have by Theorem 1,

d2(Pi , QK ) < d2(Pi , Q0) − d2(QK , Q0)

= d2(P K+1, Q0) − d2(QK , Q0)

= d2(P K+1, QK ).

�
Theorem 2: The center of the smallest enclosing circle �

is Q∗ = QK , and its radius is d∗ = d(P K+1, QK ).
Proof: It follows from (45a), (45b), Lemma 8 and the

Kuhn-Tucker condition (16). �
2) Situation 2 [m = 2, 3, 4 and n Is Arbitrary.]: We will

calculate by the projection algorithm the center Q∗ and the
radius d∗ of the smallest enclosing circle � = �(P1, · · · , Pm)
in the case that m = 2, 3, 4 and n is arbitrary. Of course our
goal is to find an algorithm to calculate Q∗ and d∗ for every
m, but at present it is possible to solve only for m = 2, 3, 4.
Case of m = 2

Consider the smallest enclosing circle � = �(P1, P2) for
two different points P1, P2 in R

n . Let Q0 be the midpoint of
the line segment P1 P2, then we have

Theorem 3: The center of � is Q∗ = Q0 and the radius is
d∗ = d(P1, Q0).
Case of m = 3

Consider the smallest enclosing circle � = �(P1, P2, P3)
for three points P1, P2, P3 in general position in R

n .
Let L0 = L(P1, P2, P3) be the affine subspace spanned
by P1, P2, P3, and Q0 ∈ L0 be the equidistant point
from P1, P2, P3. The barycentric coordinate of Q0 about
P1, P2, P3 is denoted by λ0 = (λ0

1, λ
0
2, λ

0
3).

Based on the signs of the components of λ0, we can make
the following classification without loss of generality.

Case 3-1: λ0
1 ≥ 0, λ0

2 ≥ 0, λ0
3 ≥ 0

Case 3-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0

Since Q0 is the equidistant point from P1, P2, P3, there
must be at least two positive components in the barycentric
coordinate of Q0. Therefore, all the cases are exhausted by
Case 3-1 and Case 3-2. For each case, we will determine the
center Q∗ and the radius d∗ of the smallest enclosing circle
� = �(P1, P2, P3).
Case 3-1
In this case, 	P1 P2 P3 is an acute triangle. We have the
following theorem by the Kuhn-Tucker condition (16).

Theorem 4: The center of � is Q∗ = Q0 and the radius is
d∗ = d(P1, Q0).
Case 3-2
In this case, 	P1 P2 P3 is an obtuse triangle. Let L1 =
L(P2, P3) be the line connecting the two points P2, P3.
By the assumption λ0

1 < 0, the equidistant point Q0 is
in the opposite side of P1 with respect to L1. Let Q1 =
π(Q0|L1) be the projection of Q0 onto L1, then Q1 is
the midpoint of P2 P3. Denoting by λ1 = (λ1

1, λ
1
2, λ

1
3) the

barycentric coordinate of Q1 about P1, P2, P3, we have λ1
1 =

0, λ1
2 = λ1

3 = 1/2, hence this case is the situation 1. So, we
have

Theorem 5: The center of � is Q∗ = Q1 and the radius is
d∗ = d(P2, Q1).

Case of m = 4
Consider the smallest enclosing circle � =

�(P1, P2, P3, P4) for four points P1, P2, P3, P4 in
general position in R

n . Let L0 = L(P1, · · · , P4) be the
affine subspace spanned by P1, · · · , P4 and Q0 ∈ L0 be
the equidistant point from P1, · · · , P4. The barycentric
coordinate of Q0 about P1, · · · , P4 is denoted by
λ0 = (λ0

1, · · · , λ0
4). Without loss of generality, we have

the following exhaustive classification:
Case 4-1: λ0

1 ≥ 0, λ0
2 ≥ 0, λ0

3 ≥ 0, λ0
4 ≥ 0

Case 4-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0, λ0

4 ≥ 0
Case 4-3: λ0

1 < 0, λ0
2 < 0, λ0

3 ≥ 0, λ0
4 ≥ 0

Case 4-1
By the Kuhn-Tucker condition (16), we have

Theorem 6: The center of � is Q∗ = Q0 and the radius is
d∗ = d(P1, Q0).
Case 4-2
Because λ0

1 < 0, we consider the projection Q1 = π(Q0|L1)
of Q0 onto L1 = L(P2, P3, P4). Let λ1 = (λ1

1, · · · , λ1
4) be

the barycentric coordinate of Q1 about P1, · · · , P4. Since
P1 /∈ L1, we have λ1

1 = 0. Based on the signs of the
components of λ1, we have the following classification without
loss of generality.

Case 4-2-1: λ1
1 = 0, λ1

2 ≥ 0, λ1
3 ≥ 0, λ1

4 ≥ 0
Case 4-2-2: λ1

1 = 0, λ1
2 < 0, λ1

3 ≥ 0, λ1
4 ≥ 0

Case 4-2-1
This case is the situation 1, so we have

Theorem 7: The center of � is Q∗ = Q1 and the radius is
d∗ = d(P2, Q1).
Case 4-2-2
Let Q2 = π(Q1|L2) with L2 = L(P3, P4), then Q2 is
the midpoint of P3 P4. Denoting by λ2 = (λ2

1, · · · , λ2
4) the

barycentric coordinate of Q2 about P1, · · · , P4, we have
λ2

1 = λ2
2 = 0, λ2

3 = λ2
4 = 1/2, hence also this case is the

situation 1. So, we have
Theorem 8: The center of � is Q∗ = Q2 and the radius is

d∗ = d(P3, Q2).
This completes Case 4-2, then let us consider Case 4-3.

Case 4-3
For the equidistant point Q0 ∈ L0, let us define Q1(1) =
π(Q0|L(P2, P3, P4)) and Q1(2) = π(Q0|L(P1, P3, P4)).
Then, denote by λ1(1) = (λ

1(1)
1 , · · · , λ

1(1)
4 ) and λ1(2) =

(λ
1(2)
1 , · · · , λ

1(2)
4 ) the barycentric coordinates of Q1(1) and

Q1(2) about P1, · · · , P4, respectively. Because P1 /∈
L(P2, P3, P4), P2 /∈ L(P1, P3, P4), we have

λ
1(1)
1 = 0, λ

1(2)
2 = 0. (49)

Then, consider the inner products

σ
1(1)
i = (Pi − Q1(1), Q0 − Q1(1)), i = 1, · · · , 4, (50)

σ
1(2)
i = (Pi − Q1(2), Q0 − Q1(2)), i = 1, · · · , 4. (51)

Lemma 9: σ
1(1)
i

{
< 0, i = 1,

= 0, i = 2, 3, 4,

σ
1(2)
i

{
< 0, i = 2,

= 0, i = 1, 3, 4.
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Proof: From Pi − Q1(1) ⊥ Q0 − Q1(1), i = 2, 3, 4, we have
σ

1(1)
i = 0, i = 2, 3, 4. Thus,

λ0
1σ

1(1)
1 =

4∑
i=1

λ0
i σ

1(1)
i

= (Q0 − Q1(1), Q0 − Q1(1)) > 0 (52)

holds, and by the assumption λ0
1 < 0 we obtain σ

1(1)
1 < 0.

We can prove for σ
1(2)
i similarly. �

Lemma 10: λ
1(2)
1 σ

1(1)
1 + λ

1(1)
2 σ

1(2)
2 > 0.

Proof: From Lemma 9,

λ
1(2)
1 σ

1(1)
1 =

4∑
i=1

λ
1(2)
i σ

1(1)
i

= (Q1(2) − Q1(1), Q0 − Q1(1)), (53)

λ
1(1)
2 σ

1(2)
2 =

4∑
i=1

λ
1(1)
i σ

1(2)
i

= (Q1(1) − Q1(2), Q0 − Q1(2)), (54)

so, by (53)+(54) we obtain λ
1(2)
1 σ

1(1)
1 +λ

1(1)
2 σ

1(2)
2 = (Q1(1) −

Q1(2), Q1(1) − Q1(2)) > 0. �
Now from Lemmas 9, 10, we see that λ

1(2)
1 < 0 or λ

1(1)
2 < 0

holds. So far, the points P1 and P2 have been treated exactly
equally, hence without loss of generality, we assume

λ
1(2)
1 < 0, (55)

and proceed to the next step. Here, we reconfirm the signs of
the components of λ1(2) as follows:

λ
1(2)
1 < 0, λ

1(2)
2 = 0, λ

1(2)
3 ≥ 0, λ

1(2)
4 ≥ 0. (56)

We make a classification based on the sings of components
of λ1(1). So far, the points P3 and P4 have been treated exactly
equally, so without loss of generality, we have the following
classification:

Case 4-3-1: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-2: λ
1(1)
1 = 0, λ

1(1)
2 < 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-3: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 < 0, λ

1(1)
4 ≥ 0

Case 4-3-1
From Lemma 9, we obtain d(P1, Q1(1)) < d(P2, Q1(1)) =
· · · = d(P4, Q1(1)) in a similar way to the proof of Lemma
8. Therefore, by the Kuhn-Tucker condition (16), we have

Theorem 9: The center of � is Q∗ = Q1(1) and the radius
is d∗ = d(P2, Q1(1)).
Case 4-3-2
Define Q2 ≡ π(Q1(1)|L(P3, P4)) = π(Q0|L(P3, P4)) and
consider the inner products σ 2

i = (Pi − Q2, Q0 − Q2), i =
1, · · · , 4. We have

Lemma 11: σ 2
i

{
< 0, i = 1, 2,
= 0, i = 3, 4.

Proof: From Pi − Q2 ⊥ Q0 − Q2, i = 3, 4, we have σ 2
i =

0, i = 3, 4. Next, we will prove σ 2
1 < 0, σ 2

2 < 0. Note that

Q2 = π(Q1(2)|L(P3, P4)) = π(Q0|L(P3, P4)). From (49),

λ
1(2)
1 σ 2

1 =
4∑

i=1

λ
1(2)
i σ 2

i

= (Q1(2) − Q2, Q0 − Q2)

= (Q1(2) − Q2, Q1(2) − Q2)

> 0,

and by the assumption λ
1(2)
1 < 0, we obtain σ 2

1 < 0. Similarly,
by considering

∑4
i=1 λ

1(1)
i σ 2

i , we obtain σ 2
2 < 0. �

Lemma 12: d(Pi , Q2) < d(P3, Q2) = d(P4, Q2), i =
1, 2.

Proof: Similar to the proof of Lemma 8. �
Theorem 10: The center of � is Q∗ = Q2 and the radius

is d∗ = d(P3, Q2).
Proof: By Lemma 12 and the Kuhn-Tucker

condition (16). �
Case 4-3-3
Put Q1(3) = π(Q0|L(P1, P2, P4)), and consider the inner
products σ

1(3)
i = (Pi − Q1(3), Q0 − Q1(3)), i = 1, · · · , 4.

We have

Lemma 13: σ
1(3)
i

{
> 0, i = 3,
= 0, i = 1, 2, 4.

Proof: From Pi − Q1(3) ⊥ Q0 − Q1(3), i = 1, 2, 4, we
have σ

1(3)
i = 0, i = 1, 2, 4. Thus, λ0

3σ
1(3)
3 = ∑4

i=1 λ0
i σ

1(3)
i =

(Q0 − Q1(3), Q0 − Q1(3)) > 0, so by the assumption λ0
3 > 0,

we obtain σ
1(3)
3 > 0. �

Lemma 14: λ
1(3)
1 < 0.

Proof: By Lemma 13, we have

λ
1(1)
3 σ

1(3)
3 =

4∑
i=1

λ
1(1)
i σ

1(3)
i

= (Q1(1) − Q1(3), Q0 − Q1(3)). (57)

Further, by Lemma 9,

λ
1(3)
1 σ

1(1)
1 =

4∑
i=1

λ
1(3)
i σ

1(1)
i

= (Q1(3) − Q1(1), Q0 − Q1(1)). (58)

By (57)+(58), we have

λ
1(1)
3 σ

1(3)
3 + λ

1(3)
1 σ

1(1)
1 = (Q1(1) − Q1(3), Q1(1) − Q1(3))

> 0. (59)

By the assumption of Case 4-3-3, λ
1(1)
3 < 0 holds, by

Lemma 13, σ
1(3)
3 > 0 holds, and by Lemma 9, σ

1(1)
1 < 0

holds, therefore, by (59), we obtain λ
1(3)
1 < 0. �

Here, we reconfirm the signs of the components of λ1(1)

and λ1(3) as follows:

λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 < 0, λ

1(1)
4 ≥ 0, (60)

λ
1(3)
1 < 0, λ

1(3)
2 ≥ 0, λ

1(3)
3 = 0, λ

1(3)
4 ≥ 0. (61)

If we exchange the points P2 and P3, then the second coordi-
nate and the third coordinate are exchanged in (60) and (61),
hence as a result, the signs of the components become the
same combination as in Case 4-3-2 and (56). In the proof of
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Case 4-3-2, the barycentric coordinate λ0 of Q0 is not used,
only λ1(1) and λ1(3) are used in the proof, therefore, exchang-
ing P2 and P3 in the proof of Case 4-3-2 gives the proof of
Case 4-3-3. Hence, in this Case 4-3-3, we have the following
theorem.

Theorem 11: Put Q2† = π(Q0|L(P2, P4)). Then the cen-
ter of � is Q∗ = Q2† and the radius is d∗ = d(P2, Q2†).

III. PROBLEM OF CHANNEL CAPACITY

In chapter II, we obtained some theorems on the prob-
lem of smallest enclosing circle using Euclidean geometry.
In particular, by using the distance, inner product, Pythagorean
theorem and projection in the Euclidean space, we obtained
a method of searching for the center Q∗ of the smallest
enclosing circle by the projection algorithm. The problem of
channel capacity has a similar geometric structure to that of
smallest enclosing circle based on the similarity of (6) and (8).

In this chapter, we will consider the problem of
channel capacity geometrically based on the results in
chapter II, to exploit a projection algorithm of search-
ing for the output distribution that achieves the channel
capacity.

A. Information Geometry

The underlying geometry of the problem of channel capacity
is the information geometry [1], rather than the Euclidean
geometry. A difference between the Euclidean geometry and
the information geometry is that the Euclidean geometry uses
one coordinate system but the information geometry uses
two mutually dual coordinate systems. Amari [1] investigated
α-geometry for real α, which is a family of geometric
structures. The Euclidean geometry corresponds to α = 0
and the geometry of �n corresponds to α = ±1, so, they can
be regarded as a special case of α-geometry. In α-geometry,
α-divergence, inner product, Pythagorean theorem,
α-projection can be used. In the proof of theorems for
the problem of smallest enclosing circle, we only used the
Euclidean distance, inner product, Pythagorean theorem and
projection among the properties of the Euclidean geometry.
Thus, the resulting theorems or algorithms are expected to
apply easily to the problem of channel capacity. In fact, we
show it in the following.

B. Geometric Structure on �n

Let �n be the set of probability distributions with positive
components on the output alphabet {y1, · · · , yn}, i.e.,

�n = {Q =(Q1, · · · , Qn)|Q j >0, j =1, · · · , n,

n∑
j=1

Q j = 1}.

Geometric structure is introduced on �n as follows [1].
1) Dual Coordinate Systems: Two coordinate systems, in

other words, two ways to specify Q = (Q1, · · · , Qn) ∈ �n

are given on �n .

η coordinate:

η = (η2, · · · , ηn), η j = Q j , j = 2, · · · , n,

θ coordinate:

θ = (θ2, · · · , θn), θ j = log
Q j

Q1
, j = 2, · · · , n.

The η coordinate system and the θ coordinate system are
mutually dual coordinate systems [1].

2) Geodesic: A straight line with respect to the η coordinate
is called an η geodesic. Let η1, η2 be the η coordinates
of Q1, Q2 ∈ �n , respectively, then the η geodesic passing
through Q1, Q2 is defined by

η(t) = (1 − t)η1 + tη2 ∈ �n, t ∈ R. (62)

Further, a straight line with respect to the θ coordinate
is called a θ geodesic. Let θ1, θ2 be the θ coordinates of
Q1, Q2 ∈ �n , respectively, then the θ geodesic passing
through Q1, Q2 is defined by

θ(t) = (1 − t)θ1 + tθ2 ∈ �n, t ∈ R. (63)

C. Inner Product, Pythagorean Theorem and Projection
in �n

1) Inner Product: Consider three points Q1, Q2, Q3 ∈ �n .
The inner product (Q1 − Q2, Q3 � Q2) is defined as follows.
Let η1 = (η1

2, · · · , η1
n), η2 = (η2

2, · · · , η2
n) be the η coordi-

nates of Q1, Q2, respectively, and θ2 = (θ2
2 , · · · , θ2

n ), θ3 =
(θ3

2 , · · · , θ3
n ) be the θ coordinates of Q2, Q3, respectively.

Then the inner product is defined by

(Q1 − Q2, Q3 � Q2) ≡
n∑

j=2

(η1
j − η2

j )(θ
3
j − θ2

j ). (64)

This is the inner product (in the usual sense) of the two tangent
vectors dη(t)/dt|t=0 = η1 − η2 and dθ(t)/dt|t=0 = θ3 − θ2

at Q2 for two geodesics η(t) = (1 − t)η2 + tη1 and θ(t) =
(1 − t)θ2 + tθ3 passing through Q2 [1].

For Q1, Q2, Q3 ∈ �n , the η geodesic η(t) = (1−t)η2+tη1

and the θ geodesic θ(t) = (1 − t)θ2 + tθ3 are said to be
orthogonal at Q2 if [1]

(Q1 − Q2, Q3 � Q2) = 0. (65)

We have the following lemmas.
Lemma 15: For Pi (i = 1, · · · , m), Q, R ∈ �n , consider

the inner products σi = (Pi − Q, R � Q), i = 1, · · · , m. If∑m
i=1 λi = 1, then

m∑
i=1

λiσi =
(

m∑
i=1

λi Pi − Q, R � Q

)
. (66)

Proof: By the definition of inner product and a simple
calculation. �

Lemma 16: For any P, Q, R ∈ �n , we have

(P − Q, R � Q) = −(Q − P, R � P) + (P − Q, P � Q).
Proof: By a simple calculation. �
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Fig. 3. Projection Q′′ = π(Q′|L) of Q′ onto affine subspace L .

Lemma 17: For any P, Q, R ∈ �n , we have

(P − Q, R � Q) = D(P‖Q) + D(Q‖R) − D(P‖R).

Proof: By a simple calculation (see also [1]). �
2) Pythagorean Theorem: For three points P, Q, R in �n ,

the following Pythagorean theorem and its inequality version
hold.

Theorem 12: (Pythagorean) For P, Q, R ∈ �n , we have

(P − Q, R � Q) � 0 ⇐⇒ D(P‖Q) + D(Q‖R)

� D(P‖R). (67)

Proof: By Lemma 17 (see also [1]). �
3) Projection by Kullback-Leibler Divergence: For P1, · · · ,

Pm ∈ �n , the affine subspace L(P1, · · · , Pm) ⊂ �n spanned
by P1, · · · , Pm is defined by

L(P1, · · · , Pm ) =
{

m∑
i=1

λi Pi
∣∣∣

m∑
i=1

λi = 1

}
∩ �n. (68)

For Q′ ∈ �n and a subset L ⊂ �n , the Q = Q′′
that achieves minQ∈L D(Q‖Q′) is called the projection of
Q′ onto L, and denoted by Q′′ = π(Q′|L). In this paper,
we consider only affine subspaces as L. The projection onto
an affine subspace is easily calculated because there is no
inequality constraint.

Lemma 18: Let L be an affine subspace in �n . Then, for
any Q′ ∈ �n , the projection Q′′ = π(Q′|L) exists and
is unique. Moreover, Q′′ = π(Q′|L) is equivalent to that
(P − Q′′, Q′ � Q′′) = 0 holds for any P ∈ L (see Fig.3).

Proof: see [1]. �

D. Equidistant Point and Projection of Equidistant Point

We will calculate the channel capacity C and the output
distribution Q∗ that achieves C , in case that the row vectors
P1, · · · , Pm of the channel matrix � in (2) are in general
position. In chapter II, we investigated the problem of smallest
enclosing circle based on the Euclidean geometry in case that
the points P1, · · · , Pm are in general position. In this chapter,
we will consider the problem of channel capacity based on the
information geometry.

1) Equidistant Point From P1, · · · , Pm : For a channel
matrix � in (2), a matrix � ∈ R

(m−1)×n is defined by

� =
⎛
⎜⎝

P2 − P1

...

Pm − P1

⎞
⎟⎠

=
⎛
⎜⎝

P2
1 − P1

1 · · · P2
n − P1

n
...

...

Pm
1 − P1

1 · · · Pm
n − P1

n

⎞
⎟⎠ . (69)

Then, P1, · · · , Pm are said to be in general position, if the
vectors P2 − P1, · · · , Pm − P1 are linearly independent, or

rank � = m − 1. (70)

Now, we assume in this chapter that P1, · · · , Pm are in
general position. Then, denote by � ′ ∈ R

(m−1)×(n−1) the
matrix that is made by removing the first column of � , i.e.,

� ′ =
⎛
⎜⎝

P2
2 − P1

2 · · · P2
n − P1

n
...

...

Pm
2 − P1

2 · · · Pm
n − P1

n

⎞
⎟⎠ . (71)

We see rank � ′ = m − 1. In fact, let Pi ′ = (Pi
2 , · · · , Pi

n ),
i = 1, · · · , m, and suppose

∑m
i=2 ci (Pi ′− P1′) = O. Noticing∑n

j=1 Pi
j = 1, i = 1, · · · , m, we have

∑m
i=2 ci (Pi − P1) =

O, therefore, from (70), ci = 0, i = 2, · · · , m.
Now, similarly to the problem of smallest enclosing circle,

we consider an output distribution that has the equal Kullback-
Leibler divergence from P1, · · · , Pm , i.e., we consider
Q ∈ �n that satisfies

D(Pi‖Q) = D(P1‖Q), i = 2, · · · , m. (72)

Let θ = (θ2, · · · , θn) be the θ coordinate of Q, and H (Pi) =
− ∑n

j=1 Pi
j log Pi

j be the entropy of Pi , i = 1, · · · , m. Then
by a simple calculation, we have from (72),

D(Pi‖Q) − D(P1‖Q)

= −
n∑

j=2

(Pi
j − P1

j ) θ j − H (Pi ) + H (P1)

= 0, i = 2, · · · , m. (73)

Putting b = (−H (P2) + H (P1), · · · ,−H (Pm) + H (P1)) ∈
R

m−1, we can rewrite (73) as

� ′tθ = t b. (74)

Because rank � ′ = m − 1, the equation (74) has a solu-
tion θ , but it is not necessarily unique. From a solution
θ = (θ2, · · · , θn) of (74), we make Q = (Q1, · · · , Qn) ∈ �n

by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q1 =
⎛
⎝1 +

n∑
j=2

exp θ j

⎞
⎠

−1

,

Q j = Q1 exp θ j , j = 2, · · · , n.

(75)

Then the θ coordinate of Q becomes θ .
Lemma 19: Let L0 = L(P1, · · · , Pm ) be the affine sub-

space spanned by P1, · · · , Pm (see (68)). Make Q ∈ �n
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by (75) from a solution θ of the equation (74) and put
Q0 = π(Q|L0). Then, Q0 is the unique point in L0 with

D(Pi ‖Q0) = D(P1‖Q0), i = 2, · · · , m. (76)
Proof: For Q, Q′ ∈ �n with (74), (75), let Q0 = π(Q|L0),

Q0′ = π(Q′|L0). We will prove Q0 = Q0′. Put Q0 =
(Q0

1, · · · , Q0
n), Q0′ = (Q0

1
′, · · · , Q0

n
′). Both Q and Q′ satisfy

the equation (72), so from Theorem 12 and Lemma 18, we
have

n∑
j=1

Pi
j log

Pi
j

Q0
j

=
n∑

j=1

P1
j log

P1
j

Q0
j

, i = 2, · · · , m, (77)

n∑
j=1

Pi
j log

Pi
j

Q0
j
′ =

n∑
j=1

P1
j log

P1
j

Q0
j
′ , i = 2, · · · , m. (78)

Subtracting (77) from (78),

n∑
j=1

Pi
j log

Q0
j

Q0
j
′ =

n∑
j=1

P1
j log

Q0
j

Q0
j
′ , i = 2, · · · , m. (79)

From (79), we can write

n∑
j=1

Pi
j log

Q0
j

Q0
j
′ = κ (constant), i = 1, · · · , m. (80)

Let λ0 = (λ0
1, · · · , λ0

m), λ0′ = (λ0
1
′, · · · , λ0

m
′) be the barycen-

tric coordinates of Q0, Q0 ′ ∈ L0 about P1, · · · , Pm , respec-
tively. Then, from (80),

κ =
m∑

i=1

λ0
i

n∑
j=1

Pi
j log

Q0
j

Q0
j
′ = D(Q0‖Q0 ′), (81)

κ =
m∑

i=1

λ0
i
′

n∑
j=1

Pi
j log

Q0
j

Q0
j
′ = −D(Q0 ′‖Q0). (82)

Subtracting (82) from (81),

0 = D(Q0‖Q0′) + D(Q0 ′‖Q0), (83)

thus, we obtain Q0 = Q0 ′. �
Q0 ∈ L0 = L(P1, · · · , Pm) with (76) is called the equidis-

tant point from P1, · · · , Pm . The existence and uniqueness of
Q0 is guaranteed by Lemma 19. It might be better to call Q0

an equi-divergence distribution, but, by analogy with smallest
enclosing circle, we call it an equidistant point, too.

Remark 1: In [6], the solution X1, · · · , Xm

of [6, eq. (11)] is equivalent to our equidistant point.
The existence of X1, · · · , Xm is assumed in [6], but we
proved the existence and the uniqueness of the equidistant
point by Lemma 19.

2) Projection of Equidistant Point: Now, we further define
Lk = L(Pk+1, · · · , Pm), k = 0, 1, · · · , m − 2. L0 ⊃ L1 ⊃
· · · ⊃ Lk ⊃ · · · is a decreasing sequence of affine subspaces
whose dimensions are decreasing by 1. For the equidistant
point Q0 from P1, · · · , Pm , let Q1 = π(Q0|L1) be the pro-
jection of Q0 onto L1. Further, we define Qk = π(Qk−1|Lk),
k = 1, · · · , m − 2. We see that Qk is the equidistant point
from Pk+1, · · · , Pm .

Lemma 20: Qk = π(Q0|Lk), k = 0, 1, · · · , m − 2.

Proof: It is trivial for k = 0, 1 by definition. Next for
k = 2, putting Q2′ = π(Q0|L2), we will prove Q2′ = Q2 ≡
π(Q1|L2). Since Q1 = π(Q0|L1), for any Q ∈ L1 we have
by Theorem 12 and Lemma 18

D(Q‖Q0) = D(Q‖Q1) + D(Q1‖Q0). (84)

Therefore, by (84), with respect to Q ∈ L2(⊂ L1) mini-
mizing D(Q‖Q0) and minimizing D(Q‖Q1) are equivalent.
Because the projections π(Q1|L2) and π(Q0|L2) are unique
by Lemma 18, we obtain Q2′ = Q2. For k ≥ 3, it is proved
by mathematical induction. �

Lemma 21: (Qi − Qk , Q0 � Qk) = (Qi − Qk, Qi � Qk),
i = 0, 1, · · · , k, k = 0, 1, · · · , m − 2.

Proof: By Lemma 16, we have

(Qi − Qk, Q0 � Qk)

= −(Qk − Qi , Q0 � Qi ) + (Qi − Qk, Qi � Qk). (85)

By Lemma 20, Qi = π(Q0|Li ), and by k ≥ i , Qk ∈ Li , so
we obtain (Qk − Qi , Q0 � Qi ) = 0 by Lemma 18. �

Lemma 22: For any P, Q ∈ �n, P 
= Q, we have
(P − Q, P � Q) > 0.

Proof: By Lemma 17, we obtain (P − Q, P � Q) =
D(P‖Q) + D(Q‖P) > 0. �

E. Search for Q∗ by Projection Algorithm

For a given channel matrix � in (2), let C be the channel
capacity and Q∗ be the output distribution that achieves C .
We will show that Q∗ and C are obtained by the projection
algorithm, under the assumption (70) that the row vectors
of the channel matrix � are in general position and in the
situations 1 and 2. The obtained Lemmas and Theorems are
almost the same form as in the case of smallest enclosing
circle, thus for the sake of easy reading, we put them in the
Appendix.

Remark 2: We investigated the same problem in the previ-
ous paper [7], and considered the projection algorithm by the
Kullback-Leibler divergence. However, there was an error in
the proof of [7, Th. 3].

In chapters II and III, we used common symbols both in
smallest enclosing circle and channel capacity. Then, we show
in TABLE I the correspondence of symbols between them.

IV. SEARCH FOR OPTIMAL SOLUTION FOR ARBITRARY

PLACEMENT OF POINTS

In the previous chapters, we assumed that the given points
P1, · · · , Pm ∈ R

n or ∈ �n are in general position, i.e., (18)
or (70). Under these assumptions, there exists the equidistant
point Q0 from P1, · · · , Pm , hence by the projection algo-
rithm, we could calculate the center of the smallest enclos-
ing circle Q∗, or the capacity achieving output distribution
Q∗. However, we cannot expect that arbitrarily given points
P1, · · · , Pm are in general position, especially if m is large.
For example, four points in R

2 are not in general position.
If P1, · · · , Pm are not in general position, the projection
algorithms in the previous chapters cannot be used.
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TABLE I

CORRESPONDENCE OF SYMBOLS BETWEEN SMALLEST ENCLOSING CIR-
CLE AND CHANNEL CAPACITY

In this chapter, we assume

rank � ≤ m − 1 for � =
⎛
⎜⎝

P2 − P1

...

Pm − P1

⎞
⎟⎠ , (86)

which implies that there is no constraint on the placement
of the points P1, · · · , Pm . Because the projection algorithms
in chapters II, III cannot be used in its present form if rank
� < m−1, we must consider some way to avoid this difficulty.
In this chapter, we will consider a method of giving a little
deformation to the placement of given points P1, · · · , Pm

so that the points of the deformed placement are in general
position, then apply the projection algorithm. According to
the method which will be proposed in this chapter, it is not
necessary to check the rank of � in advance. Furthermore,
we do not need to know about geometric conditions, such
as, a point is contained in the convex hull of several other
points, or what the dimension of the subspace spanned by
the whole points is, and so on. However, because we make
a little deformation to the original problem, there might be
some possibility that the obtained result is different from the
true solution of the original problem.

Let us consider an example of Fig.4. The three points
P1, P2, P3 are on a straight line in R

2. In this case, how
can we determine the smallest enclosing circle �(P1, P2, P3)
without knowing the positional relationship such as P1 lies

Fig. 4. Getting equidistant point by shifting a point.

between P2 and P3? A method that we conceive immediately
is to select two points from the three points and check all
the combinations �(P1, P2), �(P1, P3), �(P2, P3). Among
them, the one which includes all the points with the mini-
mum radius is the smallest enclosing circle. However, if the
number of points becomes large the computational complexity
becomes large, thus, such a combinatorial method cannot be
applied to general cases.

Now, let us shift P1 slightly to have P̃1 (see Fig. 4), then
there exists the equidistant point Q̃0 from P̃1, P2, P3, so,
we can calculate the smallest enclosing circle �(P̃1, P2, P3)
by the projection algorithm in the previous chapters. If the
amount of shift is small, then we can expect �(P̃1, P2, P3) =
�(P1, P2, P3).

Based on the above fundamental idea, we will give the
following algorithm.

A. Method of Lifting Dimension of Point in R
n

For m points P1, · · · , Pm in R
n with (86), define the points

P̃1, · · · , P̃m ∈ R
n+m by lifting the dimension as follows:

P1 = (P1
1 , · · · , P1

n ) → P̃1 = (P1
1 , · · · , P1

n , ε, 0, · · · , 0),

P2 = (P2
1 , · · · , P2

n ) → P̃2 = (P2
1 , · · · , P2

n , 0, ε, · · · , 0),
...

...

Pm =(Pm
1 , · · · , Pm

n ) → P̃m =(Pm
1 , · · · , Pm

n , 0, · · · , 0, ε),

(87)

where ε ∈ R, ε 
= 0, and |ε| is sufficiently small. The above
correspondence Pi → P̃i can be written as follows. Defining
the i th fundamental vector ei ∈ R

m by

ei = (0, · · · , 0,

i th
∨
1, 0, · · · , 0), i = 1, · · · , m, (88)

we have the correspondence

R
n � Pi → P̃i = (Pi , εei ) ∈ R

n+m , i = 1, · · · , m. (89)

Then let

�̃ =
⎛
⎜⎝

P̃1

...

P̃m

⎞
⎟⎠ ∈ R

m×(n+m). (90)
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Fig. 5. Three points P1 = (1), P2 = (0), P3 = (2) in R.

We have rank �̃ = m for ε 
= 0, hence, by the same
argument as (II-D), we see that there exists the equidistant
point Q̃0 ∈ L(P̃1, · · · , P̃m ) ⊂ R

n+m from P̃1, · · · , P̃m .
Denote by λ̃0 = (̃λ0

1, · · · , λ̃0
m) the barycentric coordinate

of Q̃0 about P̃1, · · · , P̃m . Define M̃ ≡ �̃ t�̃ ∈ R
m×m ,

then since rank M̃ =rank �̃ = m, M̃ is non-singular. Putting
ã = (‖P̃1‖2, · · · , ‖P̃m‖2) ∈ R

m , we have

λ̃0 = 1

2

(
ã + 2 − ãM̃−1t 1

1M̃−1t 1
1
)

M̃−1 (91)

in a similar way as (38).
Suppose we had the center Q̃∗ of the smallest enclosing

circle for P̃1, · · · , P̃m by the projection algorithm in chapter
II, then for small ε, Q̃∗ is close to the true Q∗, which is the
center of the smallest enclosing circle for P1, · · · , Pm . Denote
by λ̃∗ the barycentric coordinate of Q̃∗ about P̃1, · · · , P̃m ,
and λ̃∗∣∣

ε=0 by substituting ε = 0 in λ̃∗. Then Q∗ = λ̃∗∣∣
ε=0�

is expected to be the center of the original smallest enclosing
circle.

Example 2: Let us consider three points P1 = (1), P2 =
(0), P3 = (2) in R (see Fig.5).

Lifting the dimension, we have P̃1, P̃2, P̃3 ∈ R
4 by

P1 = (1) → P̃1 = (1, ε, 0, 0),

P2 = (0) → P̃2 = (0, 0, ε, 0),

P3 = (2) → P̃3 = (2, 0, 0, ε).

From (91), we have the barycentric coordinate λ̃0 =
(̃λ0

1, λ̃
0
2, λ̃

0
3) about P̃1, P̃2, P̃3 of the equidistant point Q̃0 from

P̃1, P̃2, P̃3 as

λ̃0 =
(−2 + 2ε2

6ε2 ,
1 + 2ε2

6ε2 ,
1 + 2ε2

6ε2

)
. (92)

For sufficiently small |ε| with ε 
= 0, λ̃0
1 = (−2+2ε2)/(6ε2) <

0, thus we remove P̃1 and project Q̃0 onto L(P̃2, P̃3).
The barycentric coordinate λ̃1 = (̃λ1

1, λ̃
1
2, λ̃

1
3) of Q̃1 =

π(Q̃0|L(P̃2, P̃3)) about P̃1, P̃2, P̃3 is λ̃1 = (0, 1/2, 1/2).
Because λ̃1

i ≥ 0, i = 1, 2, 3, this case is the situation 1, so
we have λ̃1 = λ̃∗ by Theorem 2. Then, substituting ε = 0, we
obtain λ̃∗∣∣

ε=0 = (0, 1/2, 1/2) and

Q∗ = λ̃∗∣∣
ε=0�

=
(

0,
1

2
,

1

2

) ⎛
⎝

1
0
2

⎞
⎠

= 1.

Therefore, the center Q∗ of �(P1, P2, P3) is obtained cor-
rectly.

Example 3: Let us consider four points P1 = (1, 2), P2 =
(0, 0), P3 = (2, 0), P4 = (1, 3) in R

2, which are not in

general position (see Fig.6). By lifting the dimension, we have

P1 = (1, 2) → P̃1 = (1, 2, ε, 0, 0, 0),

P2 = (0, 0) → P̃2 = (0, 0, 0, ε, 0, 0),

P3 = (2, 0) → P̃3 = (2, 0, 0, 0, ε, 0),

P4 = (1, 3) → P̃4 = (1, 3, 0, 0, 0, ε).

Let Q̃0 be the equidistant point from P̃1, · · · , P̃4, and
λ̃0 = (̃λ0

1, · · · , λ̃0
4) be the barycentric coordinate of Q̃0 about

P̃1, · · · , P̃4. From (91),

λ̃0 =
(−42 + 7ε2 + 2ε4

54ε2 + 8ε4 ,
7 + 15ε2 + 2ε4

54ε2 + 8ε4 ,
7 + 15ε2 + 2ε4

54ε2 + 8ε4 ,

28 + 17ε2 + 2ε4

54ε2 + 8ε4

)
. (93)

For sufficiently small |ε| with ε 
= 0, λ̃0
1 < 0, thus we remove

P̃1 and project Q̃0 onto L(P̃2, P̃3, P̃4). The barycentric
coordinate λ̃1 = (̃λ1

1, · · · , λ̃1
4) about P̃1, · · · , P̃4 of Q̃1 =

π(Q̃0|L(P̃2, P̃3, P̃4)) is

λ̃1 =
(

0,
5 + ε2

18 + 3ε2 ,
5 + ε2

18 + 3ε2 ,
8 + ε2

18 + 3ε2

)
. (94)

Because λ̃1
i ≥ 0, i = 1, · · · 4, this case is the situation 1,

so we have λ̃1 = λ̃∗ by Theorem 2. Substituting ε = 0,
we have λ̃∗∣∣

ε=0 = (0, 5/18, 5/18, 8/18). The center Q∗ of
�(P1, · · · , P4) is

Q∗ = λ̃∗∣∣
ε=0� (95)

=
(

0,
5

18
,

5

18
,

8

18

)
⎛
⎜⎜⎝

1 2
0 0
2 0
1 3

⎞
⎟⎟⎠ (96)

=
(

1,
4

3

)
. (97)

Hence, also in this case the center Q∗ of �(P1, · · · , P4) is
correctly obtained.

B. Lifting Dimension of Channel Matrix

In the previous section, for the points P1, · · · , Pm in R
n , by

lifting the dimension of these points, we had P̃1, · · · , P̃m ∈
R

n+m which are in general position. In this section, for the
row vectors P1, · · · , Pm of the channel matrix � in (2),
we will define P̃1, · · · , P̃m by lifting the dimension so that
they are in general position.

In the case of smallest enclosing circle, we added εei to
Pi for lifting the dimension in (89). εei is in the vicinity
of the origin of R

n . In the problem of channel capacity,
we will add a constant multiple of a distribution in the
vicinity of the uniform distribution to a constant multiple of
the row vector Pi of the channel matrix. Since the sum of
the probabilities is 1, if some component is increased then
another component must be decreased. By considering so, we
will use a vector ((1 + ε)/2m, (1 − ε)/2m, 1/2m, · · · , 1/2m)
etc., which is in the vicinity of the uniform distribution
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Fig. 6. Four points P1 = (1, 2), P2 = (0, 0), P3 = (2, 0), P4 = (1, 3)
in R

2.

(1/2m, 1/2m, · · · , 1/2m) ∈ �2m . Now, define P̃i ∈ �n+2m

by

P̃i =
( Pi

1

2m + 1
, · · · ,

Pi
n

2m + 1
,

2i−2︷ ︸︸ ︷
1

2m + 1
, · · · ,

1

2m + 1
,

2i−1 th
∨

1 + ε

2m + 1
,

2i th
∨

1 − ε

2m + 1
,

2m−2i︷ ︸︸ ︷
1

2m + 1
, · · · ,

1

2m + 1

)
, (98)

where |ε| is sufficiently small and ε 
= 0. Let

�̃ =
⎛
⎜⎝

P̃1

...

P̃m

⎞
⎟⎠ , (99)

then rank �̃ = m for ε 
= 0.
Define an m × 2m matrix � by

� = 1

2m

×

⎛
⎜⎜⎜⎝

1 + ε 1 − ε 1 1 · · · 1 1
1 1 1 + ε 1 − ε · · · 1 1
...

...
. . .

. . .
...

...
1 1 1 1 · · · 1 + ε 1 − ε

⎞
⎟⎟⎟⎠ ,

and denote by �i the i th row vector of �, where �i ∈
�2m, i = 1, · · · , m. (98) can be written as

P̃i =
(

1

2m + 1
Pi ,

2m

2m + 1
�i

)
, i = 1, · · · , m. (100)

1) Dummy Output Alphabet: The channel defined by (98),
(99), (100) is modeled as follows. That is, let the input alphabet
{x1, · · · , xm} be the same as the original one and then to
the original output alphabet {y1, · · · , yn} dummy alphabet
{y ′

1, · · · , y ′
2m} is newly added. Let us define random variables

Y , Y ′ taking values on {y1, · · · , yn}, {y ′
1, · · · , y ′

2m}, respec-
tively, by

P(Y = y j |X = xi ) = Pi
j , i = 1, · · · , m, j = 1, · · · , n,

P(Y ′ = y ′
j ′ |X = xi ) = �i

j ′, i = 1, · · · , m, j ′ = 1, · · · , 2m,

where �i
j ′ denote the j ′th element of the row vector �i .

Further, define a random variable Ỹ as the mixture of Y and
Y ′ with weight (1/(2m +1), 2m/(2m +1)). Then X → Ỹ is a
model of the channel defined by (98), (99), (100). The mutual
information I (λ,�) between X and Y ′ is close to 0. Dummy
alphabet is used for lifting the dimension of the row vectors
of the channel matrix to make them be in general position.

2) Equation of Barycentric Coordinate: Now, for Q =
(Q1, · · · , Qn) ∈ �n , T = (T1, · · · , T2m) ∈ �2m , let Q̃ ∈
�n+2m be

Q̃ =
(

1

2m + 1
Q,

2m

2m + 1
T

)
. (101)

We will calculate the equidistant point Q̃ ∈ L(P̃1 · · · , P̃m) ⊂
�n+2m from P̃1 · · · , P̃m , i.e., Q̃ satisfies

D(P̃i ||Q̃) = D(P̃1||Q̃), i = 2, · · · , m. (102)

By calculation,

D(P̃i ||Q̃) = −1

2m + 1

{ n∑
j=1

Pi
j log Q j + ε log

T2i−1

T2i
+ H (Pi)

+
2m∑

j ′=1

log(2mTj ′) + H̄(ε)
}
, (103)

where we set H (Pi) = − ∑n
j=1 Pi

j log Pi
j , H̄(ε) = −(1 +

ε) log(1 + ε) − (1 − ε) log(1 − ε). By (102), (103), we have

n∑
j=1

(
Pi

j − P1
j

)
log Q j + ε log

T2i−1

T2i
− ε log

T1

T2

= −H (Pi) + H (P1), i = 2, · · · , m. (104)

Next, let λ̃ = (̃λ1, · · · , λ̃m) be the barycentric coordinate of Q̃
about P̃1, · · · , P̃m , i.e., Q̃ = λ̃�̃ from (99). By (100), (101),
Q = λ̃�, T = λ̃�, thus substituting these into (104), we have

n∑
j=1

(
Pi

j − P1
j

)
log

m∑
i ′=1

λ̃i ′ P
i ′
j +ε log

1+ε̃λi

1 − ε̃λi
−ε log

1 + ε̃λ1

1 − ε̃λ1

= −H (Pi) + H (P1), i = 2, · · · , m. (105)

For m unknowns λ̃1, · · · , λ̃m , there are m − 1 equations (105)
and one equation

∑m
i=1 λ̃i = 1, then we have the solution

λ̃. The existence and the uniqueness of the solution λ̃ is
guaranteed by Lemma 19.

Example 4: Let us consider a channel matrix

� =
⎛
⎝

P1

P2

P3

⎞
⎠ =

⎛
⎝

0.1 0.9
0.7 0.3
0.8 0.2

⎞
⎠ , (106)

where the rows are not in general position (see Fig.7).
By lifting the dimension of �, we have the channel matrix
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Fig. 7. Three points P1 = (0.1, 0.9), P2 = (0.7, 0.3), P3 = (0.8, 0.2) in
�2.

�̃ of (99) by

P1 = (0.1, 0.9) → P̃1 = (0.1, 0.9, 1 + ε, 1 − ε, 1, 1, 1, 1)/7,

P2 = (0.7, 0.3) → P̃2 = (0.7, 0.3, 1, 1, 1 + ε, 1 − ε, 1, 1)/7,

P3 = (0.8, 0.2) → P̃3 = (0.8, 0.2, 1, 1, 1, 1, 1 + ε, 1 − ε)/7.

Let λ̃0 be the barycentric coordinate about P̃1, P̃2, P̃3 of
the equidistant point Q̃0 from P̃1, P̃2, P̃3. Solving the equa-
tion (105) with ε = 0.05, we have

λ̃0 = (2.39, −12.96, 11.57). (107)

Since λ̃0
2 = −12.96 < 0, we remove P̃2 and project Q̃0 onto

L(P̃1, P̃3) to have Q̃1 = π(Q̃0|L(P̃1, P̃3)). Let λ̃1 be the
barycentric coordinate of Q̃1 about P̃1, P̃2, P̃3. By calculation
λ̃1 = (0.5175, 0, 0.4825), so this case is the situation 1 in the
Appendix. Therefore, we have λ̃∗ = λ̃1 by Theorem 13 and
λ̃∗∣∣

ε=0 = (0.5176, 0, 0.4824). Thus,

Q∗ = λ̃∗∣∣
ε=0� (108)

= (0.5176, 0, 0.4824)

⎛
⎝

0.1 0.9
0.7 0.3
0.8 0.2

⎞
⎠ (109)

= (0.43768, 0.56232) , (110)

(see Fig.7). The channel capacity is C = D(P1‖Q∗) = 0.398
[bit/symbol]. So, the capacity achieving Q∗ and the capacity
C of � are correctly obtained.

Example 5: Consider the channel matrix

� =

⎛
⎜⎜⎝

P1

P2

P3

P4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2/5 2/5 1/5
1/3 1/3 1/3
4/5 1/10 1/10

1/10 4/5 1/10

⎞
⎟⎟⎠ , (111)

where the rows are not in general position (see Fig.8).
By lifting the dimension of �, we have the channel matrix

Fig. 8. Four points P1 = (2/5, 2/5, 1/5), P2 = (1/3, 1/3, 1/3), P3 =
(4/5, 1/10, 1/10), P4 = (1/10, 4/5, 1/10) in �3.

�̃ of (99) by

P1 = (2/5, 2/5, 1/5)

→ P̃1 = (2/5, 2/5, 1/5, 1 + ε, 1 − ε, 1, 1, 1, 1, 1, 1)/9,

P2 = (1/3, 1/3, 1/3)

→ P̃2 = (1/3, 1/3, 1/3, 1, 1, 1 + ε, 1 − ε, 1, 1, 1, 1)/9,

P3 = (4/5, 1/10, 1/10)

→ P̃3 = (4/5, 1/10, 1/10, 1, 1, 1, 1, 1 + ε, 1 − ε, 1, 1)/9,

P4 = (1/10, 4/5, 1/10)

→ P̃4 = (1/10, 4/5, 1/10, 1, 1, 1, 1, 1, 1, 1 + ε, 1 − ε)/9.

Solving the equation (105) with ε = 0.05, we have the
barycentric coordinate λ̃0 of the equidistant point Q̃0 from
P̃1, P̃2, P̃3, P̃4 as

λ̃0 = (−19.00, 7.98, 6.01, 6.01). (112)

Since λ̃0
1 = −19.00 < 0, we remove P̃1 and consider

the projection Q̃1 = π(Q̃0|L(P̃2, P̃3, P̃4)). We have the
barycentric coordinate of Q̃1 as

λ̃1 = (0,−0.14, 0.57, 0.57). (113)

Since λ̃1
2 = −0.14 < 0, we further remove P̃2 and consider the

projection Q̃2 = π(Q̃1|L(P̃3, P̃4)). We have the barycentric
coordinate of Q̃2 as

λ̃2 = (0, 0, 1/2, 1/2). (114)

Thus, this case is the situation 1 of the Appendix, so we have
λ̃∗ = λ̃2 from Theorem 13. λ̃2 in (114) does not depend on ε ∈
R, thus we have λ̃∗∣∣

ε=0 = λ̃2 = (0, 0, 1/2, 1/2). Therefore,

Q∗ = λ̃∗∣∣
ε=0� (115)

= (0, 0, 1/2, 1/2)

⎛
⎜⎜⎝

2/5 2/5 1/5
1/3 1/3 1/3
4/5 1/10 1/10

1/10 4/5 1/10

⎞
⎟⎟⎠ (116)

= (9/20, 9/20, 1/10) , (117)



1058 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 2, FEBRUARY 2017

TABLE II

SIMULATION RESULTS OF HEURISTIC ALGORITHM FOR
SMALLEST ENCLOSING CIRCLE (HS)

and the channel capacity is C = D(P3‖Q∗) = 0.447
[bit/symbol]. Also in this case, the capacity achieving Q∗ and
the capacity C of � are correctly obtained.

V. HEURISTIC ALGORITHM OF CALCULATING SMALLEST

ENCLOSING CIRCLE AND CHANNEL CAPACITY

In this chapter, we will propose heuristic projection algo-
rithms for the calculation of the smallest enclosing circle
and the channel capacity with arbitrary m, n and arbitrary
placement of points, based on the algorithms in chapter II, III
and the dimension lifting in chapter IV. In chapters II, III, we
gave algorithms to calculate the smallest enclosing circle and
the channel capacity under the limited situations, i.e., situation
1 and situation 2. The methods which will be proposed in
this chapter can be applied to any number of points and any
placement of points, but the obtained results are not always
correct. In the following, we describe heuristic algorithms and
apply them to many concrete problems generated by random
numbers, then show the percentage of getting correct solutions.

A. Heuristic Algorithm for Smallest Enclosing Circle (HS)

1) For m points P1, · · · , Pm in R
n , lift the dimension by

(87) or (89) to obtain P̃1, · · · , P̃m .
2) Calculate by (91) the barycentric coordinate λ̃0 =

(̃λ0
1, · · · , λ̃0

m ) of the equidistant point from P̃1, · · · , P̃m .
3) If λ̃0

i ≥ 0, i = 1, · · · , m, then end the algorithm and
output Q̃0.

4) If some of λ̃0
i are negative, consider the smallest one,

i.e., the negative one with maximum absolute value, say,
it is supposed to be λ̃0

1. Then remove P̃1 and leave
P̃2, . . . , P̃m .

5) For m − 1 points P̃2, . . . , P̃m , repeat the algorithm
from 2).

The simulation results of the above algorithm are shown
in TABLE II. Simulation method is as follows: Generate n
uniform random integers from −1000 to 1000 and let them be
the coordinate of one point in R

n . Repeat it m times to obtain
m points of R

n , and let them P1, · · · , Pm . Calculate the center
Q∗ of the smallest enclosing circle by the heuristic algorithm
HS. The above m time generation of points and the calculation
of Q∗ are defined to be one set. Then 10000 sets are executed
for each pair of m, n in TABLE II to show the percentage that
the correct Q∗ is obtained. Hence, in total, 20 million sets

Fig. 9. Example of placement of points for which our algorithm HS fails.

are executed in the whole TABLE II. The correctness of the
obtained Q∗ is checked by the Kuhn-Tucker condition (16).

In every case of TABLE II, we have succeeded in obtaining
the correct solutions at fairly high percentages. From these
results, we can consider that many of actual placements
of points are the situation 1. For a fixed value of m, the
percentage of success increases as n increases. This is because
the placements of points are easier to become in general
position for a larger dimension n. Further, for a fixed value of
n, the percentage of success decreases as m increases. This is
because there exist so many points in a low dimensional space
that our HS becomes difficult to succeed.

1) Example of Placement of Points for Which our Algorithm
Fails: We will show an example of the placement of points
for which the correct smallest enclosing circle cannot be
obtained by our heuristic algorithm HS (see Fig.9). Consider
4 points P1 = (−10,−9), P2 = (6, 5), P3 = (6,−7), P4 =
(−9,−10) in R

2. The center Q∗ of � = �(P1, · · · , P4) is
Q∗ = (−2,−2), which is the midpoint of P1 P2. Thus, P1 is
necessary for determining �. However, if we apply our HS to
this placement of points, we have

λ0 =
(−64800 + 22536ε2 + 357ε4 + ε6

70488ε2 + 1542ε4 + 4ε6 ,

6480 + 43350ε2 + 523ε4 + ε6

70488ε2 + 1542ε4 + 4ε6 ,

−10800 − 13278ε2 + 319ε4 + ε6

70488ε2 + 1542ε4 + 4ε6 ,

69120 + 17880ε2 + 343ε4 + ε6

70488ε2 + 1542ε4 + 4ε6

)
.

Because λ0
1 is negative and the smallest among λ0

1, · · · , λ0
4 for

sufficiently small |ε| with ε 
= 0, our HS removes P1. Hence,
in this case our HS fails.

B. Heuristic Algorithm for Channel capacity (HC)

1) For m probability distributions P1, · · · , Pm in �n , lift
the dimension by (98) or (100) to obtain P̃1, · · · , P̃m .
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TABLE III

SIMULATION RESULTS OF HEURISTIC ALGORITHM
FOR CHANNEL CAPACITY (HC)

2) Calculate by (105) the barycentric coordinate λ̃0 =
(̃λ0

1, · · · , λ̃0
m ) of the equidistant point from P̃1, · · · , P̃m .

3) If λ̃0
i ≥ 0, i = 1, · · · , m, then end the algorithm and

output Q̃0.
4) If some of λ̃0

i are negative, consider the smallest one,
i.e., the negative one with maximum absolute value, say,
it is supposed to be λ̃0

1. Then remove P̃1 and leave
P̃2, . . . , P̃m .

5) For m − 1 points P̃2, . . . , P̃m , repeat the algorithm
from 2).

The simulation results of the above algorithm are shown in
TABLE III. Simulation method is as follows: Generate n
uniform random numbers U j in (0, 1), j = 1, · · · , n and put
S = ∑n

j=1 U j . Then define P = (U1/S, · · · , Un/S) ∈ �n .
Repeat it m times to obtain m probability distributions
P1, · · · , Pm ∈ �n . Calculate the capacity achieving Q∗ by
the heuristic algorithm HC. The above m time generation
of probability distributions and the calculation of Q∗ are
defined to be one set. Then 10000 sets are executed for each
pair of m, n in TABLE III to show the percentage that the
correct Q∗ is obtained. The correctness of the obtained Q∗
is checked by the Kuhn-Tucker condition (7). The failures of
HC in TABLE III include computational errors by the function
FindRoot in Mathematica.

In every case of TABLE III, the percentage of success
is more than 99%. But, in comparison with TABLE II of
the smallest enclosing circle, we do not understand well the
reason why TABLE III has higher rate of success, although
the geometric structures of the two problems are similar.

C. Comparison of Computational Complexity

For given m points P1, · · · , Pm ∈ R
n or ∈ �n , the simplest

way to calculate the center of the smallest enclosing circle or
the channel capacity achieving distribution is to examine all
the possible combinations of the points [6]. This is a brute
force method. For example, consider the case of 4 points in R

2.
Because a circle in R

2 is determined by two or three points,
the total number of all the possible combinations of the points
in the brute force method is 4C2 + 4C3 = 10. In a similar
way, the total number N1 of all the possible combinations of
m points in R

n or �n is

N1 =
min(m,n+1)∑

�=0

mC�. (118)

TABLE IV

RATIO N2/N1 OF COMPUTATIONAL COMPLEXITY

If we consider the computational complexity for one combi-
nation as 1, then the computational complexity of the brute
force method is N1.

On the other hand, in our proposed heuristic algorithms, the
number of points is decreasing by one at every time, hence
the computational complexity N2 is

N2 = m − 2. (119)

We will show in TABLE IV the ratio N2/N1 for the case of
TABLE II and III. N2 is very smaller than N1, however, note
that the proposed method does not necessarily yield the correct
solutions.

VI. CONCLUSION

The contributions of this paper are as follows:

• We showed that the problem of channel capacity has a
similar geometric structure to the problem of smallest
enclosing circle in R

n . Then, based on this geometric
similarity, we developed a projection algorithm for cal-
culating the channel capacity.

• We obtained theorems of searching for the capacity
achieving output distribution by projection, and showed
that the barycentric coordinate plays an important role.

• For the channel matrix � which does not have the
equidistant point, we newly defined a channel matrix
�̃ which is close to � and has the equidistant point.
�̃ is made by lifting the dimension of the row vectors
of �. Then, we proposed a heuristic algorithm to calculate
the capacity achieving output distribution. Sometimes in
some problem, the difficulty can be relaxed by lifting
dimension. Our method is one example of this lifting
dimension.

Since the Euclidean geometry is familiar to us, it is easy
to develop an algorithm and to prove the correctness of the
obtained algorithm. A proposition in the Euclidean geometry
can be proved in many ways because there are many tools
that we can use. However, if we consider the corresponding
proposition in the information geometry, all the proofs in
the Euclidean geometry are not necessarily applicable to
the proposition. We found that there is one natural proof
in the Euclidean geometry that is directly applicable to the
corresponding proposition of the information geometry. Such
a proof uses only common properties of both Euclidean
and information geometries. We also found that the natural
proof is the simplest proof. This is a very interesting result.
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If we considered only the problem of channel capacity from
the beginning, I think we could not obtain the projection
algorithm developed in this paper. It is a result of a successful
link between the Euclidean and information geometries.

VII. FUTURE WORKS

• Make an algorithm to calculate Q∗ for arbitrary number
m of points in general position.

• Make a projection algorithm for the rate distortion func-
tion and the capacity constraint function.

• Transplant the Arimoto algorithm to the problem of
smallest enclosing circle.

APPENDIX

A. Search for Q∗ by Projection Algorithm

For a given channel matrix � in (2), the channel capacity
C and the capacity achieving distribution Q∗ are obtained by
the projection algorithm, under the assumption (70) that the
row vectors of the channel matrix � are in general position
and in the situations 1 and 2 below.

1) Situation 1 [There Is Just One Negative Component of
Barycentric Coordinate at Every Projection.]: We consider the
following assumption similar to section II-F1.
Assumption of Situation 1: Assume P1, · · · , Pm ∈ �n are
in general position, and let Lk = L(Pk+1, · · · , Pm), k =
0, 1, · · · , m − 2 be the affine subspace spanned by
Pk+1, · · · , Pm . Let Q0 ∈ L0 be the equidistant point from
P1, · · · , Pm , and define Qk = π(Qk−1|Lk), k = 1, · · · , m −
2. The barycentric coordinate of Qk about P1, · · · , Pm is
denoted by λk = (λk

1, · · · , λk
m). Let K = 0, 1, · · · , m − 2.

We assume that for k = 0, 1, · · · , K − 1, there is just one
negative component of λk , and for k = K , all the components
of λK are non-negative. That is, for k = 0, 1, · · · , K − 1,

λk
i

{ = 0, i = 1, · · · , k, (120a)
< 0, i = k + 1, (120b)
> 0, i = k + 2, · · · , m, (120c)

and for k = K ,

λK
i

{ = 0, i = 1, · · · , K , (121a)
> 0, i = K + 1, · · · , m. (121b)

If K = 0, we assume λ0
i ≥ 0, i = 1, · · · , m.

(The end of Assumption of situation 1)
Here, we consider the inner products σi = (Pi − QK , Q0 �

QK ), i = 1, · · · , m.

Lemma 23: σi

{
< 0, i = 1, · · · , K ,
= 0, i = K + 1, · · · , m.

Proof: By Lemma 20, QK = π(Q0|L K ), and since
P K+1 · · · , Pm ∈ L K , we have, by Lemma 18,

σi = 0, i = K + 1, · · · , m. (122)

Next, we will prove σi < 0, i = 1, · · · , K by mathematical
induction in the order of i = K , K − 1, · · · , 1.
(I) Prove σK < 0:

By (120a), (122), we have

λK−1
K σK =

m∑
i=1

λK−1
i σi

= (QK−1 − QK , Q0 � QK )

= (QK−1 − QK , QK−1 � QK ) (by Lemma 21)

> 0 (by Lemma 22). (123)

By (120b), λK−1
K < 0, thus we obtain σK < 0 by (123).

(II) Assuming σK < 0, σK−1 < 0, · · · , σk+1 < 0, prove σk <
0:

By (120a), (122), we have

λk−1
k σk +

K∑
i=k+1

λk−1
i σi =

m∑
i=1

λk−1
i σi

= (Qk−1 − QK , Q0 � QK )

= (Qk−1 − QK , Qk−1 � QK )

> 0. (124)

By the induction hypothesis, σi < 0, i = k + 1, · · · , K , and
by (120b), λk−1

k < 0, by (120c), λk−1
i > 0, i = k + 1, · · · , K ,

thus by (124), we obtain σk < 0.
(III) By the above (I), (II), we have σi < 0, i = 1, · · · , K . �

Lemma 24: D(Pi ‖QK ) < D(P K+1‖QK ) = · · · =
D(Pm‖QK ), i = 1, · · · , K .

Proof: By Lemma 23 and Theorem 12. �
Theorem 13: The output distribution that achieves the chan-

nel capacity is Q∗ = QK , and the channel capacity is C =
D(P K+1‖QK ).

Proof: By (121a), (121b), Lemma 24 and the Kuhn-Tucker
condition (7). �

We see that the above Lemmas 23, 24, Theorem 13 and
their proofs are very similar to Lemmas 7, 8, Theorem 2
and their proofs in the problem of smallest enclosing circle
in chapter II. This is because that the problems of smallest
enclosing circle and channel capacity can be solved using only
common properties of α-geometry.

2) Situation 2 [m = 2, 3, 4 and n Is Arbitrary.]: We will
calculate by the projection algorithm the capacity achieving
output distribution Q∗ and the channel capacity C , under the
assumption that the row vectors P1, · · · , Pm of the channel
matrix � in (2) are in general position in �n .

Similarly to chapter II, our goal is to find an algorithm to
calculate Q∗ and C for every m, but at present it is possible
to solve only for m = 2, 3, 4.

As can be seen from the results of the previous section,
the proofs of lemmas and theorems in the case of smallest
enclosing circle are almost the same as those of channel
capacity. Because those are similar also in this section, the
proofs of the following lemmas and theorems will be described
simply.
Case of m = 2

Consider the channel capacity of a channel matrix � with
two different row vectors P1, P2 ∈ �n . Let L0 = L(P1, P2),
and Q0 ∈ L0 be the equidistant point from P1, P2, i.e.,

D(P1‖Q0) = D(P2‖Q0), Q0 ∈ L0. (125)
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Let λ0 = (λ0
1, λ

0
2) be the barycentric coordinate of Q0 about

P1, P2. Because Q0 is between P1 and P2 in L0, we have
λ0

1 > 0, λ0
2 > 0. Thus, by (125) and the Kuhn-Tucker

condition (7), we have
Theorem 14: The output distribution that achieves the chan-

nel capacity is Q∗ = Q0, and the channel capacity is C =
D(P1‖Q0).
Case of m = 3

Suppose the channel matrix consists of three row vec-
tors P1, P2, P3 ∈ �n in general position. Let L0 =
L(P1, P2, P3) and let Q0 ∈ L0 be the equidistant point
from P1, P2, P3. Let λ0 = (λ0

1, λ
0
2, λ

0
3) be the barycentric

coordinate of Q0 about P1, P2, P3.
Based on the signs of the components of λ0,

we have the following classification without loss of
generality.

Case 3-1: λ0
1 ≥ 0, λ0

2 ≥ 0, λ0
3 ≥ 0

Case 3-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0

As in the problem of smallest enclosing circle, all the cases
are exhausted by Case 3-1 and Case 3-2.
Case 3-1
By the Kuhn-Tucker condition (7), we have

Theorem 15: The output distribution that achieves the chan-
nel capacity is Q∗ = Q0 and the channel capacity is C =
D(P1‖Q0).
Case 3-2
Similarly to the Case 3-2 in chapter II, this case is the
situation 1, hence we have

Theorem 16: The output distribution that achieves the chan-
nel capacity is Q∗ = Q1 and the channel capacity is C =
D(P2‖Q1).
Case of m = 4

Suppose the channel matrix � consists of four row vec-
tors P1, P2, P3, P4 ∈ �n in general position. Let L0 =
L(P1, · · · , P4) and Q0 ∈ L0 be the equidistant point from
P1, · · · , P4. Let λ0 = (λ0

1, · · · , λ0
4) be the barycentric coor-

dinate of Q0 about P1, · · · , P4.
Without loss of generality, we have the following classifi-

cation:
Case 4-1: λ0

1 ≥ 0, λ0
2 ≥ 0, λ0

3 ≥ 0, λ0
4 ≥ 0

Case 4-2: λ0
1 < 0, λ0

2 ≥ 0, λ0
3 ≥ 0, λ0

4 ≥ 0
Case 4-3: λ0

1 < 0, λ0
2 < 0, λ0

3 ≥ 0, λ0
4 ≥ 0

Case 4-1
By the Kuhn-Tucker condition (7), we have

Theorem 17: The output distribution that achieves the chan-
nel capacity is Q∗ = Q0 and the channel capacity is C =
D(P1‖Q0).
Case 4-2
Let L1 = L(P2, P3, P4) and Q1 = π(Q0|L1), and denote
by λ1 = (λ1

1, · · · , λ1
4) the barycentric coordinate of Q1 about

P1, · · · , P4. Since P1 /∈ L1, we have λ1
1 = 0.

Based on the signs of the components of λ1, we
have the following classification without loss of
generality.

Case 4-2-1: λ1
1 = 0, λ1

2 ≥ 0, λ1
3 ≥ 0, λ1

4 ≥ 0
Case 4-2-2: λ1

1 = 0, λ1
2 < 0, λ1

3 ≥ 0, λ1
4 ≥ 0

Consider the inner products σi = (Pi − Q1, Q0 � Q1), i =
1, · · · , 4.

Case 4-2-1
This case is the situation 1, hence we have

Theorem 18: The output distribution that achieves the chan-
nel capacity is Q∗ = Q1 and the channel capacity is C =
D(P2‖Q1).
Case 4-2-2
Let us define Q2 = π(Q1|L2) with L2 = L(P3, P4), then
Q2 is between P3 and P4 in the line L2. Denoting by
λ2 = (λ2

1, · · · , λ2
4) the barycentric coordinate of Q2 about

P1, · · · , P4, we have λ2
1 = λ2

2 = 0, λ2
3 > 0, λ2

4 > 0, hence
this is the situation 1. So, we have

Theorem 19: Let Q2 = π(Q1|L(P3, P4)). The output
distribution that achieves the channel capacity is Q∗ = Q2

and the channel capacity is C = D(P3‖Q2).
This completes Case 4-2, then let us consider Case 4-3.

Case 4-3
Here, let us define Q1(1) = π(Q0|L(P2, P3, P4)) and
Q1(2) = π(Q0|L(P1, P3, P4)). Then denote by λ1(1) =
(λ

1(1)
1 , · · · , λ

1(1)
4 ) and λ1(2) = (λ

1(2)
1 , · · · , λ

1(2)
4 ) the barycen-

tric coordinates of Q1(1) and Q1(2) about P1, · · · , P4, respec-
tively. Consider the inner products

σ
1(1)
i = (Pi − Q1(1), Q0 � Q1(1)), i = 1, · · · , 4, (126)

σ
1(2)
i = (Pi − Q1(2), Q0 � Q1(2)), i = 1, · · · , 4. (127)

Lemma 25: σ
1(1)
i

{
< 0, i = 1,
= 0, i = 2, 3, 4,

σ
1(2)
i

{
< 0, i = 2,
= 0, i = 1, 3, 4.

Lemma 26: λ
1(2)
1 σ

1(1)
1 + λ

1(1)
2 σ

1(2)
2 > 0.

The above Lemmas 25, 26 are proved in the same way as
Lemmas 9, 10.

Now from Lemmas 25, 26, we see that λ
1(2)
1 < 0 or λ

1(1)
2 <

0 holds. So far, the points P1 and P2 have been treated exactly
equally, hence without loss of generality, we assume λ

1(2)
1 < 0.

Based on the signs of the components of λ1(1), we have the
following classification:

Case 4-3-1: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-2: λ
1(1)
1 = 0, λ

1(1)
2 < 0, λ

1(1)
3 ≥ 0, λ

1(1)
4 ≥ 0

Case 4-3-3: λ
1(1)
1 = 0, λ

1(1)
2 ≥ 0, λ

1(1)
3 < 0, λ

1(1)
4 ≥ 0

Case 4-3-1
Theorem 20: The output distribution that achieves the chan-

nel capacity is Q∗ = Q1(1) and the channel capacity is
C = D(P2‖Q1(1)).

Proof: Similar to the proof of Theorem 9. �
Case 4-3-2
Define Q2 ≡ π(Q1(1)|L(P3, P4))(= π(Q0|L(P3, P4))), and
consider the inner products σ 2

i = (Pi − Q2, Q0 � Q2), i =
1, · · · , 4.

Lemma 27: σ 2
i

{
< 0, i = 1, 2,
= 0, i = 3, 4.

Lemma 28: D(Pi ‖Q2) < D(P3‖Q2) = D(P4‖Q2), i =
1, 2.

Theorem 21: The output distribution that achieves the chan-
nel capacity is Q∗ = Q2 and the channel capacity is C =
D(P3‖Q2).

The above Lemmas 27, 28 and Theorem 21 are proved in
the same way as Lemmas 11, 12 and Theorem 10.
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Case 4-3-3
Let us define Q1(3) = π(Q0|L(P1, P2, P4)), and denote by
λ1(3) = (λ

1(3)
1 , · · · , λ

1(3)
4 ) the barycentric coordinate of Q1(3)

about P1, · · · , P4. Consider the inner products σ
1(3)
i = (Pi −

Q1(3), Q0 � Q1(3)), i = 1, · · · , 4.

Lemma 29: σ
1(3)
i

{
> 0, i = 3,
= 0, i = 1, 2, 4.

Lemma 30: λ
1(3)
1 < 0.

Theorem 22: Let Q2† ≡ π(Q0|L(P2, P4)). The output
distribution that achieves the channel capacity is Q∗ = Q2†

and the channel capacity is C = D(P2‖Q2†).
The above Lemmas 29, 30 and Theorem 22 are proved in

the same way as Lemmas 13, 14 and Theorem 11.
Summarizing the classification of case m = 4 in chapters II

and III, we have the signs of barycentric coordinates and the
pair (Q∗, d∗) as follows:

Case 4-1 (+ + ++) (Q0, d(P1, Q0))

Case 4-2 (− + ++)

Case 4-2-1 (0 + ++) (Q1, d(P2, Q1))

Case 4-2-1 (0 − ++) (Q2, d(P3, Q2))

Case 4-3 (− − ++)

Case 4-3-1 (0 + ++) (Q1(1), d(P2, Q1(1)))
Case 4-3-2 (0 − ++) (Q2, d(P3, Q2))

Case 4-3-3 (0 + −+) (Q2†, d(P2, Q2†))
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